A priori error estimates of $P^2_0-P_1$ mixed finite element methods for a class of nonlinear parabolic equations
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 4, pp. 409-424
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we consider $P^2_0-P_1$ mixed finite element approximations of a class of nonlinear parabolic equations. The backward Euler scheme for temporal discretization is used. Firstly, a new mixed projection is defined and the related a priori error estimates are proved. Secondly, optimal a priori error estimates for pressure variable and velocity variable are derived. Finally, a numerical example is presented to verify the theoretical results.
@article{SJVM_2021_24_4_a5,
author = {Ch. Liu and T. Hou and Zh. Weng},
title = {A priori error estimates of $P^2_0-P_1$ mixed finite element methods for a class of nonlinear parabolic equations},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {409--424},
publisher = {mathdoc},
volume = {24},
number = {4},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a5/}
}
TY - JOUR AU - Ch. Liu AU - T. Hou AU - Zh. Weng TI - A priori error estimates of $P^2_0-P_1$ mixed finite element methods for a class of nonlinear parabolic equations JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2021 SP - 409 EP - 424 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a5/ LA - ru ID - SJVM_2021_24_4_a5 ER -
%0 Journal Article %A Ch. Liu %A T. Hou %A Zh. Weng %T A priori error estimates of $P^2_0-P_1$ mixed finite element methods for a class of nonlinear parabolic equations %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2021 %P 409-424 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a5/ %G ru %F SJVM_2021_24_4_a5
Ch. Liu; T. Hou; Zh. Weng. A priori error estimates of $P^2_0-P_1$ mixed finite element methods for a class of nonlinear parabolic equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 4, pp. 409-424. http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a5/