Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2021_24_4_a5, author = {Ch. Liu and T. Hou and Zh. Weng}, title = {A priori error estimates of $P^2_0-P_1$ mixed finite element methods for a class of nonlinear parabolic equations}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {409--424}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a5/} }
TY - JOUR AU - Ch. Liu AU - T. Hou AU - Zh. Weng TI - A priori error estimates of $P^2_0-P_1$ mixed finite element methods for a class of nonlinear parabolic equations JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2021 SP - 409 EP - 424 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a5/ LA - ru ID - SJVM_2021_24_4_a5 ER -
%0 Journal Article %A Ch. Liu %A T. Hou %A Zh. Weng %T A priori error estimates of $P^2_0-P_1$ mixed finite element methods for a class of nonlinear parabolic equations %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2021 %P 409-424 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a5/ %G ru %F SJVM_2021_24_4_a5
Ch. Liu; T. Hou; Zh. Weng. A priori error estimates of $P^2_0-P_1$ mixed finite element methods for a class of nonlinear parabolic equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 4, pp. 409-424. http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a5/