Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2021_24_4_a5, author = {Ch. Liu and T. Hou and Zh. Weng}, title = {A priori error estimates of $P^2_0-P_1$ mixed finite element methods for a class of nonlinear parabolic equations}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {409--424}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a5/} }
TY - JOUR AU - Ch. Liu AU - T. Hou AU - Zh. Weng TI - A priori error estimates of $P^2_0-P_1$ mixed finite element methods for a class of nonlinear parabolic equations JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2021 SP - 409 EP - 424 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a5/ LA - ru ID - SJVM_2021_24_4_a5 ER -
%0 Journal Article %A Ch. Liu %A T. Hou %A Zh. Weng %T A priori error estimates of $P^2_0-P_1$ mixed finite element methods for a class of nonlinear parabolic equations %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2021 %P 409-424 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a5/ %G ru %F SJVM_2021_24_4_a5
Ch. Liu; T. Hou; Zh. Weng. A priori error estimates of $P^2_0-P_1$ mixed finite element methods for a class of nonlinear parabolic equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 4, pp. 409-424. http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a5/
[1] Brezzi F., “On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers”, R.A.I.R.O. Anal. Numer., 8 (1974), 129–151
[2] Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991
[3] Boffi D., Brezzi F., Fortin M., Mixed Finite Element Methods and Applications, Springer, Heidelberg, 2013
[4] Chen L., Chen Y., “Two-grid method for nonlinear reaction-diffusion equations by mixed finite element methods”, J. Sci. Comput., 49:3 (2011), 383–401
[5] Cannon J. R., Lin Y. P., “A priori $L^2$ error estimates for finite-element methods for nonlinear diffusion equations with memory”, SIAM J. Numer. Anal., 27:3 (1990), 595–607
[6] Chen S. C., Chen H. R., “New mixed element schemes for a second-order elliptic problem”, Math. Numer. Sin., 32:2 (2010), 213–218
[7] Ciarlet P. G., The Finite Element Method for Elliptic Problems, North Holland, Amsterdam, 1978
[8] Dawson C. N., Wheeler M. F., Woodward C. S., “A two-grid finite difference scheme for nonlinear parabolic equations”, SIAM J. Numer. Anal., 35 (1998), 435–452
[9] Eriksson K., Johnson C., “Adaptive finite element methods for parabolic problems IV: nonlinear problems”, SIAM J. Numer. Anal., 32:6 (1995), 1729–1749
[10] Grisvard P., Elliptic Problems in Nonsmooth Domains, Pitman, Boston–London–Melbourne, 1985
[11] Garcia S. M.F., “Improved error estimates for mixed finite-element approximations for nonlinear parabolic equations: the continuous-time case”, Numer. Methods Partial Differ. Eq., 10:2 (1994), 129–147
[12] Garcia S. M.F., “Improved error estimates for mixed finite-element approximations for nonlinear parabolic equations: the discrete-time case”, Numer. Methods Partial Differ. Eq., 10:2 (1994), 149–169
[13] Hou T., Jiang W., Yang Y., Leng H., “Two-grid $P^2_0-P_1$ mixed finite element methods combined with Crank-Nicolson scheme for a class of nonlinear parabolic equations”, Appl. Numer. Math., 137 (2019), 136–150
[14] Nie Y., Thomee V., “A lumped mass finite-element method with quadrature for a non-linear parabolic problem”, IMA J. Numer. Anal., 5:4 (1985), 371–396
[15] Pani A. K., Fairweather G., “$H^1$-Galerkin mixed finite element methods for parabolic partial integro-differential equations”, IMA J. Numer. Anal., 22 (2002), 231–252
[16] Pehlivanov A. I., Carey G. F., Vassilevski P. S., “Least-squares mixed finite element methods for non-selfadjoint elliptic problems: I. Error estimates”, Numer. Math., 72:4 (1996), 501–522
[17] Quarteroni A., Valli A., Numerical Approximation of Partial Differential Equations, Springer, 1997
[18] Russell T. F., “Time stepping along characteristics with incomplete iteration for a Galerkin approximation of miscible displacement in porous media”, SIAM J. Numer. Anal., 22:5 (1985), 970–1013
[19] Shi D., Yan F., Wang J., “Unconditional superconvergence analysis of a new mixed finite element method for nonlinear Sobolev equation”, Appl. Math. Comput., 274:1 (2016), 182–194
[20] Shi D., Yan F., Wang J., “Unconditionally superclose analysis of a new mixed finite element method for nonlinear parabolic equation”, J. Comput. Math., 37:1 (2019), 1–17
[21] Shi D., Yang H., “Unconditionally optimal error estimates of a new mixed FEM for nonlinear Schrodinger equations”, Adv. Comput. Math., 45 (2019), 3173–3194
[22] Shi F., Yu J.P., Li K.T., “A new stabilized mixed finite-element method for Poisson equation based on two local Gauss integrations for linear element pair”, Int. J. Comput. Math., 88 (2011), 2293–2305
[23] Thomee V., Galerkin Finite Element Methods for Parabolic Problems, Springer-Verlag, Berlin, 1984
[24] Wu L., Allen M. B., “A two-grid method for mixed finite-element solution of reaction-diffusion equations”, Numer. Methods Partial Differ. Eq., 15 (1999), 317–332
[25] Weng Z., Feng X., Huang P., “A new mixed finite element method based on the Crank-Nicolson scheme for the parabolic problems”, Appl. Math. Model., 36 (2012), 5068–5079