A priori error estimates of $P^2_0-P_1$ mixed finite element methods for a class of nonlinear parabolic equations
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 4, pp. 409-424.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider $P^2_0-P_1$ mixed finite element approximations of a class of nonlinear parabolic equations. The backward Euler scheme for temporal discretization is used. Firstly, a new mixed projection is defined and the related a priori error estimates are proved. Secondly, optimal a priori error estimates for pressure variable and velocity variable are derived. Finally, a numerical example is presented to verify the theoretical results.
@article{SJVM_2021_24_4_a5,
     author = {Ch. Liu and T. Hou and Zh. Weng},
     title = {A priori error estimates of $P^2_0-P_1$ mixed finite element methods for a class of nonlinear parabolic equations},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {409--424},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a5/}
}
TY  - JOUR
AU  - Ch. Liu
AU  - T. Hou
AU  - Zh. Weng
TI  - A priori error estimates of $P^2_0-P_1$ mixed finite element methods for a class of nonlinear parabolic equations
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2021
SP  - 409
EP  - 424
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a5/
LA  - ru
ID  - SJVM_2021_24_4_a5
ER  - 
%0 Journal Article
%A Ch. Liu
%A T. Hou
%A Zh. Weng
%T A priori error estimates of $P^2_0-P_1$ mixed finite element methods for a class of nonlinear parabolic equations
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2021
%P 409-424
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a5/
%G ru
%F SJVM_2021_24_4_a5
Ch. Liu; T. Hou; Zh. Weng. A priori error estimates of $P^2_0-P_1$ mixed finite element methods for a class of nonlinear parabolic equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 4, pp. 409-424. http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a5/

[1] Brezzi F., “On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers”, R.A.I.R.O. Anal. Numer., 8 (1974), 129–151

[2] Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991

[3] Boffi D., Brezzi F., Fortin M., Mixed Finite Element Methods and Applications, Springer, Heidelberg, 2013

[4] Chen L., Chen Y., “Two-grid method for nonlinear reaction-diffusion equations by mixed finite element methods”, J. Sci. Comput., 49:3 (2011), 383–401

[5] Cannon J. R., Lin Y. P., “A priori $L^2$ error estimates for finite-element methods for nonlinear diffusion equations with memory”, SIAM J. Numer. Anal., 27:3 (1990), 595–607

[6] Chen S. C., Chen H. R., “New mixed element schemes for a second-order elliptic problem”, Math. Numer. Sin., 32:2 (2010), 213–218

[7] Ciarlet P. G., The Finite Element Method for Elliptic Problems, North Holland, Amsterdam, 1978

[8] Dawson C. N., Wheeler M. F., Woodward C. S., “A two-grid finite difference scheme for nonlinear parabolic equations”, SIAM J. Numer. Anal., 35 (1998), 435–452

[9] Eriksson K., Johnson C., “Adaptive finite element methods for parabolic problems IV: nonlinear problems”, SIAM J. Numer. Anal., 32:6 (1995), 1729–1749

[10] Grisvard P., Elliptic Problems in Nonsmooth Domains, Pitman, Boston–London–Melbourne, 1985

[11] Garcia S. M.F., “Improved error estimates for mixed finite-element approximations for nonlinear parabolic equations: the continuous-time case”, Numer. Methods Partial Differ. Eq., 10:2 (1994), 129–147

[12] Garcia S. M.F., “Improved error estimates for mixed finite-element approximations for nonlinear parabolic equations: the discrete-time case”, Numer. Methods Partial Differ. Eq., 10:2 (1994), 149–169

[13] Hou T., Jiang W., Yang Y., Leng H., “Two-grid $P^2_0-P_1$ mixed finite element methods combined with Crank-Nicolson scheme for a class of nonlinear parabolic equations”, Appl. Numer. Math., 137 (2019), 136–150

[14] Nie Y., Thomee V., “A lumped mass finite-element method with quadrature for a non-linear parabolic problem”, IMA J. Numer. Anal., 5:4 (1985), 371–396

[15] Pani A. K., Fairweather G., “$H^1$-Galerkin mixed finite element methods for parabolic partial integro-differential equations”, IMA J. Numer. Anal., 22 (2002), 231–252

[16] Pehlivanov A. I., Carey G. F., Vassilevski P. S., “Least-squares mixed finite element methods for non-selfadjoint elliptic problems: I. Error estimates”, Numer. Math., 72:4 (1996), 501–522

[17] Quarteroni A., Valli A., Numerical Approximation of Partial Differential Equations, Springer, 1997

[18] Russell T. F., “Time stepping along characteristics with incomplete iteration for a Galerkin approximation of miscible displacement in porous media”, SIAM J. Numer. Anal., 22:5 (1985), 970–1013

[19] Shi D., Yan F., Wang J., “Unconditional superconvergence analysis of a new mixed finite element method for nonlinear Sobolev equation”, Appl. Math. Comput., 274:1 (2016), 182–194

[20] Shi D., Yan F., Wang J., “Unconditionally superclose analysis of a new mixed finite element method for nonlinear parabolic equation”, J. Comput. Math., 37:1 (2019), 1–17

[21] Shi D., Yang H., “Unconditionally optimal error estimates of a new mixed FEM for nonlinear Schrodinger equations”, Adv. Comput. Math., 45 (2019), 3173–3194

[22] Shi F., Yu J.P., Li K.T., “A new stabilized mixed finite-element method for Poisson equation based on two local Gauss integrations for linear element pair”, Int. J. Comput. Math., 88 (2011), 2293–2305

[23] Thomee V., Galerkin Finite Element Methods for Parabolic Problems, Springer-Verlag, Berlin, 1984

[24] Wu L., Allen M. B., “A two-grid method for mixed finite-element solution of reaction-diffusion equations”, Numer. Methods Partial Differ. Eq., 15 (1999), 317–332

[25] Weng Z., Feng X., Huang P., “A new mixed finite element method based on the Crank-Nicolson scheme for the parabolic problems”, Appl. Math. Model., 36 (2012), 5068–5079