On degenerating tetrahedra resulting from red refinements of tetrahedral partitions
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 4, pp. 383-392.

Voir la notice de l'article provenant de la source Math-Net.Ru

We analyse red refinements of tetrahedral partitions and prove that the measure of degeneracy of some produced tetrahedra may tend to infinity if refinements are constructed in an inappropriate way. The maximum angle condition is shown to be violated in these cases as well.
@article{SJVM_2021_24_4_a3,
     author = {S. Korotov and M. K\v{r}{\'\i}\v{z}ek},
     title = {On degenerating tetrahedra resulting from red refinements of tetrahedral partitions},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {383--392},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a3/}
}
TY  - JOUR
AU  - S. Korotov
AU  - M. Křížek
TI  - On degenerating tetrahedra resulting from red refinements of tetrahedral partitions
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2021
SP  - 383
EP  - 392
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a3/
LA  - ru
ID  - SJVM_2021_24_4_a3
ER  - 
%0 Journal Article
%A S. Korotov
%A M. Křížek
%T On degenerating tetrahedra resulting from red refinements of tetrahedral partitions
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2021
%P 383-392
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a3/
%G ru
%F SJVM_2021_24_4_a3
S. Korotov; M. Křížek. On degenerating tetrahedra resulting from red refinements of tetrahedral partitions. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 4, pp. 383-392. http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a3/

[1] Babuska I., Aziz A. K., “On the angle condition in the finite element method”, SIAM J. Numer. Anal., 13 (1976), 214–226

[2] Baidakova N. V., “On Jamet's estimates for the finite element method with interpolation at uniform nodes of a simplex”, Sib. Adv. Math., 28 (2018), 1–22

[3] Bey J., “Simplicial grid refinement: on Freudenthal's algorithm and the optimal number of congruence classes”, Numer. Math., 85 (2000), 1–29

[4] Brandts J., Korotov S., Krizek M., Simplicial Partitions with Applications to the Finite Element Method, Springer-Verlag, Berlin, 2020

[5] Ciarlet P. G., The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978

[6] Edelsbrunner H., “Triangulations and meshes in computational geometry”, Acta Numer., 9 (2000), 133–213

[7] Grande J., “Red-green refinement of simplicial meshes in $d$ dimensions”, Math. Comp., 88 (2019), 751–782

[8] Jamet P., “Estimations d'erreur pour des elements finis droits presque degeneres”, RAIRO Anal. Numer., 10 (1976), 43–60

[9] Khademi A., Korotov S., Vatne J. E., “On generalizations of the Synge- Kr?zek maximum angle condition for d-simplices”, J. Comput. Appl. Math., 358 (2019), 29–33

[10] Korotov S., Krizek M., “Red refinements of simplices into congruent subsimplices”, Comput. Math. Appl., 67 (2014), 2199–2204

[11] Krizek M., “An equilibrium finite element method in three-dimensional elasticity”, Appl. Math., 27 (1982), 46–75

[12] Krizek M., “On the maximum angle condition for linear tetrahedral elements”, SIAM J. Numer. Anal., 29 (1992), 513–520

[13] Krizek M., Strouboulis T., “How to generate local refinements of unstructured tetrahedral meshes satisfying a regularity ball condition”, Numer. Methods for Partial Differential Equations, 13 (1997), 201–214

[14] Sommerville D. M.Y., “Division of space by congruent triangles and tetrahedra”, Proc. Royal Soc. Edinburgh, 43 (1923), 85–116

[15] Zenisek A., “Convergence of the finite element method for boundary value problems of a system of elliptic equations”, Appl. Math., 14 (1969), 355–377 (in Czech)

[16] Zenisek A., “Variational problems in domains with cusp points”, Appl. Math., 38 (1993), 381–403

[17] Zenisek A., Hoderova-Zlamalova J., “Semiregular Hermite tetrahedral finite elements”, Appl. Math., 46 (2001), 295–315

[18] Zhang S., “Successive subdivisions of tetrahedra and multigrid methods on tetrahedral meshes”, Houston J. Math., 21:2 (1995), 541–556