A priori error analysis of a stabilized finite-element scheme for an elliptic equation with time-dependent boundary conditions
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 4, pp. 345-363

Voir la notice de l'article provenant de la source Math-Net.Ru

This study aims to implement a numerical scheme in order to find the eigenvalues of the Dirichlet-to-Neumann semigroup. This can be used to check its positivity for non-circular domains. This generalized scheme is analyzed after studying the case of the unit ball, in which an explicit representation for the semigroup was obtained by Peter Lax. After analyzing the generalized scheme, we checked its convergence through numerical simulations that were performed using FreeFem++ software.
@article{SJVM_2021_24_4_a1,
     author = {N. Abou Jmeih and T. El Arwadi and S. Dib},
     title = {A priori error analysis of a stabilized finite-element scheme for an elliptic equation with time-dependent boundary conditions},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {345--363},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a1/}
}
TY  - JOUR
AU  - N. Abou Jmeih
AU  - T. El Arwadi
AU  - S. Dib
TI  - A priori error analysis of a stabilized finite-element scheme for an elliptic equation with time-dependent boundary conditions
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2021
SP  - 345
EP  - 363
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a1/
LA  - ru
ID  - SJVM_2021_24_4_a1
ER  - 
%0 Journal Article
%A N. Abou Jmeih
%A T. El Arwadi
%A S. Dib
%T A priori error analysis of a stabilized finite-element scheme for an elliptic equation with time-dependent boundary conditions
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2021
%P 345-363
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a1/
%G ru
%F SJVM_2021_24_4_a1
N. Abou Jmeih; T. El Arwadi; S. Dib. A priori error analysis of a stabilized finite-element scheme for an elliptic equation with time-dependent boundary conditions. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 4, pp. 345-363. http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a1/