A priori error analysis of a stabilized finite-element scheme for an elliptic equation with time-dependent boundary conditions
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 4, pp. 345-363.

Voir la notice de l'article provenant de la source Math-Net.Ru

This study aims to implement a numerical scheme in order to find the eigenvalues of the Dirichlet-to-Neumann semigroup. This can be used to check its positivity for non-circular domains. This generalized scheme is analyzed after studying the case of the unit ball, in which an explicit representation for the semigroup was obtained by Peter Lax. After analyzing the generalized scheme, we checked its convergence through numerical simulations that were performed using FreeFem++ software.
@article{SJVM_2021_24_4_a1,
     author = {N. Abou Jmeih and T. El Arwadi and S. Dib},
     title = {A priori error analysis of a stabilized finite-element scheme for an elliptic equation with time-dependent boundary conditions},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {345--363},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a1/}
}
TY  - JOUR
AU  - N. Abou Jmeih
AU  - T. El Arwadi
AU  - S. Dib
TI  - A priori error analysis of a stabilized finite-element scheme for an elliptic equation with time-dependent boundary conditions
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2021
SP  - 345
EP  - 363
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a1/
LA  - ru
ID  - SJVM_2021_24_4_a1
ER  - 
%0 Journal Article
%A N. Abou Jmeih
%A T. El Arwadi
%A S. Dib
%T A priori error analysis of a stabilized finite-element scheme for an elliptic equation with time-dependent boundary conditions
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2021
%P 345-363
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a1/
%G ru
%F SJVM_2021_24_4_a1
N. Abou Jmeih; T. El Arwadi; S. Dib. A priori error analysis of a stabilized finite-element scheme for an elliptic equation with time-dependent boundary conditions. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 4, pp. 345-363. http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a1/

[1] Ahmad R. A., El Arwadi T., Chrayteh H., Sac-Epee J.-M., “A priori and a posteriori error estimates for a Crank Nicolson type scheme of an elliptic problem with dynamical boundary conditions”, J. Math. Research, 8:2 (2016) | DOI

[2] Allaire G., Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation, Numerical Mathematics and Scientific Computation, Oxford University Press, 2007

[3] Banasiak J., Arlotti L., Perturbations of Positive Semigroups with Applications, Springer Monographs in Mathematics, Springer-Verlag, 2006

[4] Brezis H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011

[5] Chavel I., “Poincare metrics on real projective space”, Indiana Univ. Math. J., 23:1 (1973), 95–101

[6] Cherif M. A., El Arwadi T., Emamirad H., Sac-Epee J. M., “Dirichlet-to-Neumann semigroup acts as a magnifying glass”, Semigroup Forum, 88:3 (2014), 753–767

[7] Courant R., Hilbert D., Methods of Mathematical Physics, v. 1, Interscience Publ., New York, 1953

[8] Daners D., Non-Positivity of the Semigroup Generated by the Dirichlet-to-Neumann Operator, The University of Sydney, Australia, NSW, 2006

[9] El Arwadi T., Dib S., Sayah T., “A piori and a posteriori estimations of a linear elliptic problem with dynamical boundary condition”, Appl. Math. Inf. Sci., 9:6 (2015), 3305–3317

[10] Emamirad H., Laadnani I., “An approximating family for the Dirichlet-to-Neumann semigroup”, Adv. Differ. Equ., 11 (2006), 241–257

[11] Emamirad H., Mokhtarzadeh M.-R., “Dirichlet-to-Neumann operator on the perturbed unit disk”, Electron. J. Diff. Equations, 6:159 (2012)

[12] Ern A., Guermond J. L., Theory and Practice of Finite Elements, Springer Verlag, 2004

[13] Heywood J. G., Rannacher R., “Finite-element approximation of the nonstationary Navier-Stokes problem. Part IV: error analysis for second-order time discretization”, SIAM J. Numer. Anal., 27:2 (1990), 353–384

[14] Ismail M. E.H., Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, 98, Cambridge University Press, Cambridge, 2005

[15] Lax P. D., Functional Analysis, Wiley, New York, 2002

[16] Vrabie I. I., $C_0$-semigroups and Applications, Elsevier Science, Amsterdam–Boston, 2003

[17] Watson G. N., A Treatise on the Theory of Bessel Functions, v. 2, Cambridge University Press, Cambridge, 1944