Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2021_24_4_a1, author = {N. Abou Jmeih and T. El Arwadi and S. Dib}, title = {A priori error analysis of a stabilized finite-element scheme for an elliptic equation with time-dependent boundary conditions}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {345--363}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a1/} }
TY - JOUR AU - N. Abou Jmeih AU - T. El Arwadi AU - S. Dib TI - A priori error analysis of a stabilized finite-element scheme for an elliptic equation with time-dependent boundary conditions JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2021 SP - 345 EP - 363 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a1/ LA - ru ID - SJVM_2021_24_4_a1 ER -
%0 Journal Article %A N. Abou Jmeih %A T. El Arwadi %A S. Dib %T A priori error analysis of a stabilized finite-element scheme for an elliptic equation with time-dependent boundary conditions %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2021 %P 345-363 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a1/ %G ru %F SJVM_2021_24_4_a1
N. Abou Jmeih; T. El Arwadi; S. Dib. A priori error analysis of a stabilized finite-element scheme for an elliptic equation with time-dependent boundary conditions. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 4, pp. 345-363. http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a1/
[1] Ahmad R. A., El Arwadi T., Chrayteh H., Sac-Epee J.-M., “A priori and a posteriori error estimates for a Crank Nicolson type scheme of an elliptic problem with dynamical boundary conditions”, J. Math. Research, 8:2 (2016) | DOI
[2] Allaire G., Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation, Numerical Mathematics and Scientific Computation, Oxford University Press, 2007
[3] Banasiak J., Arlotti L., Perturbations of Positive Semigroups with Applications, Springer Monographs in Mathematics, Springer-Verlag, 2006
[4] Brezis H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011
[5] Chavel I., “Poincare metrics on real projective space”, Indiana Univ. Math. J., 23:1 (1973), 95–101
[6] Cherif M. A., El Arwadi T., Emamirad H., Sac-Epee J. M., “Dirichlet-to-Neumann semigroup acts as a magnifying glass”, Semigroup Forum, 88:3 (2014), 753–767
[7] Courant R., Hilbert D., Methods of Mathematical Physics, v. 1, Interscience Publ., New York, 1953
[8] Daners D., Non-Positivity of the Semigroup Generated by the Dirichlet-to-Neumann Operator, The University of Sydney, Australia, NSW, 2006
[9] El Arwadi T., Dib S., Sayah T., “A piori and a posteriori estimations of a linear elliptic problem with dynamical boundary condition”, Appl. Math. Inf. Sci., 9:6 (2015), 3305–3317
[10] Emamirad H., Laadnani I., “An approximating family for the Dirichlet-to-Neumann semigroup”, Adv. Differ. Equ., 11 (2006), 241–257
[11] Emamirad H., Mokhtarzadeh M.-R., “Dirichlet-to-Neumann operator on the perturbed unit disk”, Electron. J. Diff. Equations, 6:159 (2012)
[12] Ern A., Guermond J. L., Theory and Practice of Finite Elements, Springer Verlag, 2004
[13] Heywood J. G., Rannacher R., “Finite-element approximation of the nonstationary Navier-Stokes problem. Part IV: error analysis for second-order time discretization”, SIAM J. Numer. Anal., 27:2 (1990), 353–384
[14] Ismail M. E.H., Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, 98, Cambridge University Press, Cambridge, 2005
[15] Lax P. D., Functional Analysis, Wiley, New York, 2002
[16] Vrabie I. I., $C_0$-semigroups and Applications, Elsevier Science, Amsterdam–Boston, 2003
[17] Watson G. N., A Treatise on the Theory of Bessel Functions, v. 2, Cambridge University Press, Cambridge, 1944