Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2021_24_3_a5, author = {A. A. Makarov and S. V. Makarova}, title = {On filter banks in spline wavelet transform on a non-uniform grid}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {299--311}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a5/} }
TY - JOUR AU - A. A. Makarov AU - S. V. Makarova TI - On filter banks in spline wavelet transform on a non-uniform grid JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2021 SP - 299 EP - 311 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a5/ LA - ru ID - SJVM_2021_24_3_a5 ER -
A. A. Makarov; S. V. Makarova. On filter banks in spline wavelet transform on a non-uniform grid. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 3, pp. 299-311. http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a5/
[1] Chui Ch., Vvedenie v veivlety, Per. s angl., Mir, M., 2001 | MR
[2] Stolnits E., DeRouz T., Salezin D., Veivlety v kompyuternoi grafik, Per. s angl., NITs «Regulyarnaya i khaoticheskaya dinamika», Izhevsk, 2002
[3] Shumilov B.M., “Algoritmy s rasschepleniem veivlet-preobrazovaniya splainov pervoi stepeni na neravnomernykh setkakh”, Zhurn. vychisl. matem. i mat. fiziki, 56:7 (2016), 1236–1247 | Zbl
[4] Demyanovich Yu.K., “Splain-veivlety pri odnokratnom lokalnom ukrupnenii setki”, Zap. nauchn. sem. POMI, 405, 2012, 97–118
[5] Demyanovich Yu.K., Ponomarev A.S., “O realizatsii splain-vspleskovogo razlozheniya pervogo poryadka”, Zap. nauchn. sem. POMI, 453, 2016, 33–73
[6] Faber G., “Uber stetige functionen”, Math. Ann., 66 (1908), 81–94 | DOI | MR
[7] Haar A., “Zur Theorie der orthogonalen Funktionensysteme”, Math. Ann., 69 (1910), 331–371 | DOI | MR | Zbl
[8] Makarov A.A., “O veivletnom razlozhenii prostranstv splainov pervogo poryadka”, Problemy matem. analiza, 2008, no. 38, 47–60
[9] Makarov A.A., “Algoritmy veivletnogo szhatiya prostranstv lineinykh splainov”, Vestn. S.-Peterburskogo universiteta. Ser. 1, 2012, no. 2, 41–51 | Zbl
[10] Makarov A.A., “Algoritmy veivletnogo utochneniya prostranstv splainov pervogo poryadka”, Tr. SPIIRAN, 2011, no. 19, 203–220
[11] Makarov A.A., “O dvukh algoritmakh veivlet-razlozheniya prostranstv lineinykh splainov”, Zap. nauchn. sem. POMI, 463, 2017, 277–293
[12] Makarov A., Makarova S., “On lazy Faber's type decomposition for linear splines”, Proc. AIP Conference, 2164 (2019), 110006 | DOI
[13] Makarova S., Makarov A., “On linear spline wavelets with shifted supports”, Lecture Notes in Computer Science, 11974, 2020, 430–437 | DOI | Zbl
[14] Makarov A.A., “O postroenii splainov maksimalnoi gladkosti”, Problemy matem. analiza, 2011, no. 60, 25–38 | Zbl
[15] Mak-Vilyams F.Dzh., Sloen N.Dzh.A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, M., 1979
[16] Sweldens W., “The lifting scheme: A custom-design construction of biorthogonal wavelets”, Appl. Comput. Harmonic Analys., 3:2 (1996), 186–200 | DOI | MR | Zbl
[17] Malla S., Veivlety v obrabotke signalov, Per. s angl. Ya.M. Zhileikina, Mir, M., 2005