On filter banks in spline wavelet transform on a non-uniform grid
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 3, pp. 299-311
Voir la notice de l'article provenant de la source Math-Net.Ru
An explicit representation of filter banks for constructing the wavelet transform of spaces of linear minimal splines on non-uniform grids on a segment is obtained. The decomposition and reconstruction operators are constructed, their mutual inverse is proved. The relations connecting the corresponding filters are established. The approach to constructing the spline wavelet decompositions used in this paper is based on approximation relations as the initial structure for constructing spaces of minimal splines and calibration relations to prove the embedding of the corresponding spaces. The advantages of the approach proposed, due to rejecting the formalism of the Hilbert spaces, are in the possibility of using non-uniform grids and fairly arbitrary non-polynomial spline wavelets.
@article{SJVM_2021_24_3_a5,
author = {A. A. Makarov and S. V. Makarova},
title = {On filter banks in spline wavelet transform on a non-uniform grid},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {299--311},
publisher = {mathdoc},
volume = {24},
number = {3},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a5/}
}
TY - JOUR AU - A. A. Makarov AU - S. V. Makarova TI - On filter banks in spline wavelet transform on a non-uniform grid JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2021 SP - 299 EP - 311 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a5/ LA - ru ID - SJVM_2021_24_3_a5 ER -
A. A. Makarov; S. V. Makarova. On filter banks in spline wavelet transform on a non-uniform grid. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 3, pp. 299-311. http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a5/