On filter banks in spline wavelet transform on a non-uniform grid
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 3, pp. 299-311.

Voir la notice de l'article provenant de la source Math-Net.Ru

An explicit representation of filter banks for constructing the wavelet transform of spaces of linear minimal splines on non-uniform grids on a segment is obtained. The decomposition and reconstruction operators are constructed, their mutual inverse is proved. The relations connecting the corresponding filters are established. The approach to constructing the spline wavelet decompositions used in this paper is based on approximation relations as the initial structure for constructing spaces of minimal splines and calibration relations to prove the embedding of the corresponding spaces. The advantages of the approach proposed, due to rejecting the formalism of the Hilbert spaces, are in the possibility of using non-uniform grids and fairly arbitrary non-polynomial spline wavelets.
@article{SJVM_2021_24_3_a5,
     author = {A. A. Makarov and S. V. Makarova},
     title = {On filter banks in spline wavelet transform on a non-uniform grid},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {299--311},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a5/}
}
TY  - JOUR
AU  - A. A. Makarov
AU  - S. V. Makarova
TI  - On filter banks in spline wavelet transform on a non-uniform grid
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2021
SP  - 299
EP  - 311
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a5/
LA  - ru
ID  - SJVM_2021_24_3_a5
ER  - 
%0 Journal Article
%A A. A. Makarov
%A S. V. Makarova
%T On filter banks in spline wavelet transform on a non-uniform grid
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2021
%P 299-311
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a5/
%G ru
%F SJVM_2021_24_3_a5
A. A. Makarov; S. V. Makarova. On filter banks in spline wavelet transform on a non-uniform grid. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 3, pp. 299-311. http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a5/

[1] Chui Ch., Vvedenie v veivlety, Per. s angl., Mir, M., 2001 | MR

[2] Stolnits E., DeRouz T., Salezin D., Veivlety v kompyuternoi grafik, Per. s angl., NITs «Regulyarnaya i khaoticheskaya dinamika», Izhevsk, 2002

[3] Shumilov B.M., “Algoritmy s rasschepleniem veivlet-preobrazovaniya splainov pervoi stepeni na neravnomernykh setkakh”, Zhurn. vychisl. matem. i mat. fiziki, 56:7 (2016), 1236–1247 | Zbl

[4] Demyanovich Yu.K., “Splain-veivlety pri odnokratnom lokalnom ukrupnenii setki”, Zap. nauchn. sem. POMI, 405, 2012, 97–118

[5] Demyanovich Yu.K., Ponomarev A.S., “O realizatsii splain-vspleskovogo razlozheniya pervogo poryadka”, Zap. nauchn. sem. POMI, 453, 2016, 33–73

[6] Faber G., “Uber stetige functionen”, Math. Ann., 66 (1908), 81–94 | DOI | MR

[7] Haar A., “Zur Theorie der orthogonalen Funktionensysteme”, Math. Ann., 69 (1910), 331–371 | DOI | MR | Zbl

[8] Makarov A.A., “O veivletnom razlozhenii prostranstv splainov pervogo poryadka”, Problemy matem. analiza, 2008, no. 38, 47–60

[9] Makarov A.A., “Algoritmy veivletnogo szhatiya prostranstv lineinykh splainov”, Vestn. S.-Peterburskogo universiteta. Ser. 1, 2012, no. 2, 41–51 | Zbl

[10] Makarov A.A., “Algoritmy veivletnogo utochneniya prostranstv splainov pervogo poryadka”, Tr. SPIIRAN, 2011, no. 19, 203–220

[11] Makarov A.A., “O dvukh algoritmakh veivlet-razlozheniya prostranstv lineinykh splainov”, Zap. nauchn. sem. POMI, 463, 2017, 277–293

[12] Makarov A., Makarova S., “On lazy Faber's type decomposition for linear splines”, Proc. AIP Conference, 2164 (2019), 110006 | DOI

[13] Makarova S., Makarov A., “On linear spline wavelets with shifted supports”, Lecture Notes in Computer Science, 11974, 2020, 430–437 | DOI | Zbl

[14] Makarov A.A., “O postroenii splainov maksimalnoi gladkosti”, Problemy matem. analiza, 2011, no. 60, 25–38 | Zbl

[15] Mak-Vilyams F.Dzh., Sloen N.Dzh.A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, M., 1979

[16] Sweldens W., “The lifting scheme: A custom-design construction of biorthogonal wavelets”, Appl. Comput. Harmonic Analys., 3:2 (1996), 186–200 | DOI | MR | Zbl

[17] Malla S., Veivlety v obrabotke signalov, Per. s angl. Ya.M. Zhileikina, Mir, M., 2005