Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2021_24_3_a2, author = {S. K. Katiyar and A. K. B. Chand and S. Jha}, title = {Parameter identification of constrained data by a new class of rational fractal function}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {261--276}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a2/} }
TY - JOUR AU - S. K. Katiyar AU - A. K. B. Chand AU - S. Jha TI - Parameter identification of constrained data by a new class of rational fractal function JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2021 SP - 261 EP - 276 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a2/ LA - ru ID - SJVM_2021_24_3_a2 ER -
%0 Journal Article %A S. K. Katiyar %A A. K. B. Chand %A S. Jha %T Parameter identification of constrained data by a new class of rational fractal function %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2021 %P 261-276 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a2/ %G ru %F SJVM_2021_24_3_a2
S. K. Katiyar; A. K. B. Chand; S. Jha. Parameter identification of constrained data by a new class of rational fractal function. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 3, pp. 261-276. http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a2/
[1] Barnsley M.F., “Fractal functions and interpolation”, Constr. Approx., 2:4 (1986), 303–329 | DOI | MR | Zbl
[2] Barnsley M.F., Harrington A.N., “The calculus of fractal interpolation functions”, J. Approx. Theory, 57:1 (1989), 14–34 | DOI | MR | Zbl
[3] Barnsley M.F., Elton J., Hardin D., Massopust P., “Hidden variable fractal interpolation functions”, SIAM J. Math. Anal., 20:5 (1989), 1218–1242 | DOI | MR | Zbl
[4] Barnsley M.F., Hegland M., Massopust P., “Numerics and fractals”, Bull. Inst. Math. Acad. Sin., 9:3 (2014), 389–430 | MR | Zbl
[5] Bouboulis P., Dalla L., “Hidden variable vector valued fractal interpolation functions”, Fractals, 13:3 (2005), 227–232 | DOI | MR | Zbl
[6] Chand A.K.B., Vijender N., Navascues M.A., “Shape preservation of scientific data through rational fractal splines”, Calcolo, 51:2 (2013), 329–362 | DOI | MR
[7] Chand A.K.B., Katiyar S.K., Viswanathan P., “Approximation using hidden variable fractal interpolation function”, J. Fractal Geom., 2:1 (2015), 81–114 | DOI | MR | Zbl
[8] Chand A.K.B., Katiyar S.K., “Quintic Hermite fractal interpolation in a strip: preserving copositivity”, Springer Proc. Math. Stat., 143 (2015), 463–475 | MR | Zbl
[9] Chand A.K.B., Navascues M.A., Viswanathan P., Katiyar S.K., “Fractal trigonometric polynomials for restricted range approximation”, Fractals, 24:2 (2016), 1650022 | DOI | MR | Zbl
[10] Delbourgo R., Gregory J.A., “Shape preserving piecewise rational interpolation”, SIAM J. Stat. Comput., 6:4 (1985), 967–976 | DOI | MR | Zbl
[11] Duan Q., Djidjeli K., Price W.G., Twizell E.H., “Rational cubic spline based on function values”, Comput. Graph., 22:4 (1998), 479–486 | DOI
[12] Duan Q., Xu G., Liu A., Wang X., Cheng F., “Constrained interpolation using rational cubic spline with linear denominators”, Korean J. Comput. Appl. Math., 6 (1999), 203–215 | DOI | MR | Zbl
[13] Dyn N., Levin D., “Subdivision schemes in geometric modelling”, Acta Numer., 11 (2002), 73–144 | DOI | MR | Zbl
[14] Fritsch F.N., Carlson R.E., “Monotone piecewise cubic interpolation”, SIAM J. Numer. Ana., 17:2 (1980), 238–246 | DOI | MR | Zbl
[15] Katiyar S.K., Chand A.K.B., “Toward a unified methodology for fractal extension of various shape preserving spline interpolants”, Springer Proc. Math. Stat., 139 (2015), 223–238 | MR | Zbl
[16] Katiyar S.K., Chand A.K.B., Navascues M.A., “Hidden variable A-fractal functions and their monotonicity aspects”, Rev. R. Acad. Cienc. Zaragoza, 71 (2016), 7–30 | MR
[17] Katiyar S.K., Reddy K.M., Chand A.K.B., “Constrained data visualization using rational bi-cubic fractal functions”, Mathematics and Computing, Proc. ICMC 2017, Springer, 2017, 265–277 | DOI | MR | Zbl
[18] Katiyar S.K., Shape Preserving Rational and Coalescence Fractal Interpolation Functions and Approximation by Variable Scaling Fractal Functions, Ph. D. Thesis, Indian Institute of Technology, Madras, India, 2017
[19] Katiyar S.K., Chand A.K.B., G. Saravana Kumar, “A new class of rational cubic spline fractal interpolation function and its constrained aspects”, Appl. Math. Comp., 346 (2019), 319–335 | DOI | MR | Zbl
[20] Katiyar S.K., Chand A.K.B., A New Class of Monotone/Convex Rational Fractal Function, arXiv: 1809.10682
[21] Katiyar S.K., Chand A.K.B., “Shape Preserving Rational Quartic Fractal Functions”, Fractals, 27:8 (2019), 1950141 | DOI | Zbl
[22] Katiyar S.K., Bicubic Partially Blended Rational Quartic Surface, arXiv: 1910.09822
[23] Massopust P.R., Fractal Functions, Fractal Surfaces, and Wavelets, Academic Press, 1994 | MR | Zbl
[24] Navascues M.A., “Fractal polynomial interpolation”, Z. Anal. Anwend., 25:2 (2005), 401–418 | DOI | MR
[25] Navascues M.A., Sebastian M.V., “Smooth fractal interpolation”, J. Inequal. Appl., 2006, 78734 | MR | Zbl
[26] Navascues M.A., Viswanathan P., Chand A.K.B., Sebastian M.V., Katiyar S.K., “Fractal bases for Banach spaces of smooth functions”, Bull. Aust. Math. Soc., 92:3 (2015), 405–419 | DOI | MR | Zbl
[27] Protasov V.Yu., “Extremal Lp-norms of linear operators and self-similar functions”, Linear Alg. Appl., 428:10 (2008), 2339–2357 | DOI | MR
[28] Schmidt J.W., Heß W., “Positivity of cubic polynomials on intervals and positive spline interpolation”, BIT Numer. Math., 28 (1988), 340–352 | DOI | MR | Zbl
[29] Sarfraz M., Hussain M.Z., “Data visualization using rational spline interpolation”, J. Comp. Appl. Math., 189:1-2 (2006), 513–525 | DOI | MR | Zbl
[30] Sarfraz M., Hussain M.Z., Nisar A., “Positive data modeling using spline function”, Appl. Math. Comp., 216:7 (2010), 2036–2049 | DOI | MR | Zbl
[31] Sarfraz M., Hussain M.Z., Hussain M., “Modeling rational spline for visualization of shaped data”, J. Numer. Math., 21:1 (2013), 63–87 | DOI | MR
[32] Tetenov A.V., “Self-similar Jordan arcs and the graph directed systems of similarities”, Sib. Math. J., 47:5 (2006), 940–949 | DOI | MR | Zbl
[33] Vladimirov A.A., Sheipak I.A., “Self-similar functions in L2[0; 1] and the Sturm-Liouville problem with a singular indefinite weight”, Sbornik: Mathematics, 197:11 (2006), 15–69 | DOI | MR
[34] Wang H.Y., Yu J.S., “Fractal interpolation functions with variable parameters and their analytical properties”, J. Approx. Theory, 175 (2013), 1–18 | DOI | MR | Zbl