Parameter identification of constrained data by a new class of rational fractal function
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 3, pp. 261-276.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper sets a theoretical foundation for applications of fractal interpolation functions (FIFs). We construct rational cubic spline FIFs (RCSFIFs) with a quadratic denominator involving two shape parameters. The elements of the iterated function system (IFS) in each subinterval are identified befittingly so that the graph of the resulting $\mathcal{C}^1$-RCSFIF lies within a prescribed rectangle. These parameters include, in particular, conditions on the positivity of the $\mathcal{C}^1$-RCSFIF. The problem of visualization of constrained data is also addressed when the data is lying above a straight line, the proposed fractal curve is required to lie on the same side of the line. We illustrate our interpolation scheme with some numerical examples.
@article{SJVM_2021_24_3_a2,
     author = {S. K. Katiyar and A. K. B. Chand and S. Jha},
     title = {Parameter identification of constrained data by a new class of rational fractal function},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {261--276},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a2/}
}
TY  - JOUR
AU  - S. K. Katiyar
AU  - A. K. B. Chand
AU  - S. Jha
TI  - Parameter identification of constrained data by a new class of rational fractal function
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2021
SP  - 261
EP  - 276
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a2/
LA  - ru
ID  - SJVM_2021_24_3_a2
ER  - 
%0 Journal Article
%A S. K. Katiyar
%A A. K. B. Chand
%A S. Jha
%T Parameter identification of constrained data by a new class of rational fractal function
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2021
%P 261-276
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a2/
%G ru
%F SJVM_2021_24_3_a2
S. K. Katiyar; A. K. B. Chand; S. Jha. Parameter identification of constrained data by a new class of rational fractal function. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 3, pp. 261-276. http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a2/

[1] Barnsley M.F., “Fractal functions and interpolation”, Constr. Approx., 2:4 (1986), 303–329 | DOI | MR | Zbl

[2] Barnsley M.F., Harrington A.N., “The calculus of fractal interpolation functions”, J. Approx. Theory, 57:1 (1989), 14–34 | DOI | MR | Zbl

[3] Barnsley M.F., Elton J., Hardin D., Massopust P., “Hidden variable fractal interpolation functions”, SIAM J. Math. Anal., 20:5 (1989), 1218–1242 | DOI | MR | Zbl

[4] Barnsley M.F., Hegland M., Massopust P., “Numerics and fractals”, Bull. Inst. Math. Acad. Sin., 9:3 (2014), 389–430 | MR | Zbl

[5] Bouboulis P., Dalla L., “Hidden variable vector valued fractal interpolation functions”, Fractals, 13:3 (2005), 227–232 | DOI | MR | Zbl

[6] Chand A.K.B., Vijender N., Navascues M.A., “Shape preservation of scientific data through rational fractal splines”, Calcolo, 51:2 (2013), 329–362 | DOI | MR

[7] Chand A.K.B., Katiyar S.K., Viswanathan P., “Approximation using hidden variable fractal interpolation function”, J. Fractal Geom., 2:1 (2015), 81–114 | DOI | MR | Zbl

[8] Chand A.K.B., Katiyar S.K., “Quintic Hermite fractal interpolation in a strip: preserving copositivity”, Springer Proc. Math. Stat., 143 (2015), 463–475 | MR | Zbl

[9] Chand A.K.B., Navascues M.A., Viswanathan P., Katiyar S.K., “Fractal trigonometric polynomials for restricted range approximation”, Fractals, 24:2 (2016), 1650022 | DOI | MR | Zbl

[10] Delbourgo R., Gregory J.A., “Shape preserving piecewise rational interpolation”, SIAM J. Stat. Comput., 6:4 (1985), 967–976 | DOI | MR | Zbl

[11] Duan Q., Djidjeli K., Price W.G., Twizell E.H., “Rational cubic spline based on function values”, Comput. Graph., 22:4 (1998), 479–486 | DOI

[12] Duan Q., Xu G., Liu A., Wang X., Cheng F., “Constrained interpolation using rational cubic spline with linear denominators”, Korean J. Comput. Appl. Math., 6 (1999), 203–215 | DOI | MR | Zbl

[13] Dyn N., Levin D., “Subdivision schemes in geometric modelling”, Acta Numer., 11 (2002), 73–144 | DOI | MR | Zbl

[14] Fritsch F.N., Carlson R.E., “Monotone piecewise cubic interpolation”, SIAM J. Numer. Ana., 17:2 (1980), 238–246 | DOI | MR | Zbl

[15] Katiyar S.K., Chand A.K.B., “Toward a unified methodology for fractal extension of various shape preserving spline interpolants”, Springer Proc. Math. Stat., 139 (2015), 223–238 | MR | Zbl

[16] Katiyar S.K., Chand A.K.B., Navascues M.A., “Hidden variable A-fractal functions and their monotonicity aspects”, Rev. R. Acad. Cienc. Zaragoza, 71 (2016), 7–30 | MR

[17] Katiyar S.K., Reddy K.M., Chand A.K.B., “Constrained data visualization using rational bi-cubic fractal functions”, Mathematics and Computing, Proc. ICMC 2017, Springer, 2017, 265–277 | DOI | MR | Zbl

[18] Katiyar S.K., Shape Preserving Rational and Coalescence Fractal Interpolation Functions and Approximation by Variable Scaling Fractal Functions, Ph. D. Thesis, Indian Institute of Technology, Madras, India, 2017

[19] Katiyar S.K., Chand A.K.B., G. Saravana Kumar, “A new class of rational cubic spline fractal interpolation function and its constrained aspects”, Appl. Math. Comp., 346 (2019), 319–335 | DOI | MR | Zbl

[20] Katiyar S.K., Chand A.K.B., A New Class of Monotone/Convex Rational Fractal Function, arXiv: 1809.10682

[21] Katiyar S.K., Chand A.K.B., “Shape Preserving Rational Quartic Fractal Functions”, Fractals, 27:8 (2019), 1950141 | DOI | Zbl

[22] Katiyar S.K., Bicubic Partially Blended Rational Quartic Surface, arXiv: 1910.09822

[23] Massopust P.R., Fractal Functions, Fractal Surfaces, and Wavelets, Academic Press, 1994 | MR | Zbl

[24] Navascues M.A., “Fractal polynomial interpolation”, Z. Anal. Anwend., 25:2 (2005), 401–418 | DOI | MR

[25] Navascues M.A., Sebastian M.V., “Smooth fractal interpolation”, J. Inequal. Appl., 2006, 78734 | MR | Zbl

[26] Navascues M.A., Viswanathan P., Chand A.K.B., Sebastian M.V., Katiyar S.K., “Fractal bases for Banach spaces of smooth functions”, Bull. Aust. Math. Soc., 92:3 (2015), 405–419 | DOI | MR | Zbl

[27] Protasov V.Yu., “Extremal Lp-norms of linear operators and self-similar functions”, Linear Alg. Appl., 428:10 (2008), 2339–2357 | DOI | MR

[28] Schmidt J.W., Heß W., “Positivity of cubic polynomials on intervals and positive spline interpolation”, BIT Numer. Math., 28 (1988), 340–352 | DOI | MR | Zbl

[29] Sarfraz M., Hussain M.Z., “Data visualization using rational spline interpolation”, J. Comp. Appl. Math., 189:1-2 (2006), 513–525 | DOI | MR | Zbl

[30] Sarfraz M., Hussain M.Z., Nisar A., “Positive data modeling using spline function”, Appl. Math. Comp., 216:7 (2010), 2036–2049 | DOI | MR | Zbl

[31] Sarfraz M., Hussain M.Z., Hussain M., “Modeling rational spline for visualization of shaped data”, J. Numer. Math., 21:1 (2013), 63–87 | DOI | MR

[32] Tetenov A.V., “Self-similar Jordan arcs and the graph directed systems of similarities”, Sib. Math. J., 47:5 (2006), 940–949 | DOI | MR | Zbl

[33] Vladimirov A.A., Sheipak I.A., “Self-similar functions in L2[0; 1] and the Sturm-Liouville problem with a singular indefinite weight”, Sbornik: Mathematics, 197:11 (2006), 15–69 | DOI | MR

[34] Wang H.Y., Yu J.S., “Fractal interpolation functions with variable parameters and their analytical properties”, J. Approx. Theory, 175 (2013), 1–18 | DOI | MR | Zbl