About sampling of the two-dimensional Laplace operator in a smooth two-dimensional area
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 3, pp. 253-259.

Voir la notice de l'article provenant de la source Math-Net.Ru

Currently the finite element method is most widespread technique for solving problems of mechanics of a deformable solid body. Its shortcomings are well-known: approximating a displacement by a piecewise-linear function, we obtain the tension to be discontinuous. At the same time, it is necessary to notice that most problems of mechanics of a deformable solid body are described by the elliptic type equations which have smooth decisions. It seems to be relevant to develop algorithms which would take this smoothness into account. The idea of such algorithms belongs to K.I. Babenko. This idea was stated in the early seventies of the last century. A long-lasting application of this technique in elliptic tasks to eigenvalues has proved their high performance to the author of this study. However, in this technique the matrix of the finite-dimensional task turns out to be not symmetric but only close to that to be symmetrized. Below, the application when sampling the Bubnov-Galyorkina method, this defect is eliminated. Let us note that the symmetry of the matrix of the finite-dimensional task is important when studying the stability. Unlike classical difference methods and the finite element method where the dependence of the convergence ratio on the number of nodes of the grid is power, we have an exponential decrease of the error.
@article{SJVM_2021_24_3_a1,
     author = {S. D. Algazin},
     title = {About sampling of the two-dimensional {Laplace} operator in a smooth two-dimensional area},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {253--259},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a1/}
}
TY  - JOUR
AU  - S. D. Algazin
TI  - About sampling of the two-dimensional Laplace operator in a smooth two-dimensional area
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2021
SP  - 253
EP  - 259
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a1/
LA  - ru
ID  - SJVM_2021_24_3_a1
ER  - 
%0 Journal Article
%A S. D. Algazin
%T About sampling of the two-dimensional Laplace operator in a smooth two-dimensional area
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2021
%P 253-259
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a1/
%G ru
%F SJVM_2021_24_3_a1
S. D. Algazin. About sampling of the two-dimensional Laplace operator in a smooth two-dimensional area. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 3, pp. 253-259. http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a1/

[1] Babenko K.I., Osnovy chislennogo analiza, Nauka, M., 1986 | MR

[2] Orszag S.A., Gotlib D., Numerical Analysis of Spectral Methods. Theory and Applications, Society for industrial and applied mathematics, Philadelphia, 1977 | MR | Zbl

[3] Toselli A., Widlund O., Domain Decomposition Methods – Algorithms and Theory, Springer Series in Computational Mathematics, Springer-Verlag, Berlin–Heidelberg, 2005 | DOI | MR | Zbl

[4] Schwab Cristoph, p- and Hp- Finite Element Methods: Theory and Application to Solid and Fluid Mechanics, Oxford University, Oxford, 1998 | MR

[5] Schwab C., Suri M., Xenophontos C., “The $hp$ finite element method for problems in mechanics with boundary layers”, J. Computer Methods in Applied Mechanics and Engineering, 157:3-4 (1998), 311–333 | DOI | MR | Zbl

[6] Algazin S.D., $h$-matritsa – novyi matematicheskii apparat dlya diskretizatsii mnogomernykh uravnenii matematicheskoi fiziki, “URSS”, M., 2019

[7] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979

[8] Algazin S.D., “O lokalizatsii sobstvennykh znachenii zamknutykh lineinykh operatorov”, Sib. matem. zhurn., 24:2 (1983), 3–8 | MR | Zbl

[9] Algazin S.D., Chislennye algoritmy bez nasyscheniya v klassicheskikh zadachakh matematicheskoi fiziki, Izd. 3-e, pererabotannoe i dopolnennoe, “Agentstvo Intellektualnoi sobstvennosti na Transporte”, M., 2016

[10] Algazin S.D., Chislennye algoritmy bez nasyscheniya v klassicheskikh zadachakh matematicheskoi fiziki, Izd. 4-e, pererabotannoe, “URSS”, M., 2019

[11] Algazin S.D., Kiiko I.A., Flatter plastin i obolochek, Izd. 2-e, pererabotannoe i dopolnennoe, “URSS”, M., 2016