Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2021_24_2_a6, author = {J. R. Sharma and H. Arora}, title = {A family of fifth-order iterative methods for finding multiple roots of nonlinear equations}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {213--227}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_2_a6/} }
TY - JOUR AU - J. R. Sharma AU - H. Arora TI - A family of fifth-order iterative methods for finding multiple roots of nonlinear equations JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2021 SP - 213 EP - 227 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2021_24_2_a6/ LA - ru ID - SJVM_2021_24_2_a6 ER -
%0 Journal Article %A J. R. Sharma %A H. Arora %T A family of fifth-order iterative methods for finding multiple roots of nonlinear equations %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2021 %P 213-227 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2021_24_2_a6/ %G ru %F SJVM_2021_24_2_a6
J. R. Sharma; H. Arora. A family of fifth-order iterative methods for finding multiple roots of nonlinear equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 2, pp. 213-227. http://geodesic.mathdoc.fr/item/SJVM_2021_24_2_a6/
[1] Schroder E., “Über unendlich viele Algorithmen zur Auflosung der Gleichungen”, Math. Ann., 2 (1870), 317–365 | DOI | MR
[2] Traub J. F., Iterative Methods for the Solution of Equations, Prentice-Hall, Englewood Cliffs, 1964 | MR | Zbl
[3] Biazar J., Ghanbari B., “A new third-order family of nonlinear solvers for multiple roots”, Comput. Math. Appl., 59:10 (2010), 3315–3319 | DOI | MR | Zbl
[4] Chun C., Neta B., “A third-order modification of Newton's method for multiple roots”, Appl. Math. Comput., 211:2 (2009), 474–479 | MR | Zbl
[5] Chun C., Bae H. J., Neta B., “New families of nonlinear third-order solvers for finding multiple roots”, Comput. Math. Appl., 57:9 (2009), 1574–1582 | DOI | MR | Zbl
[6] Hansen E., Patrick M., “A family of root finding methods”, Numer. Math., 27 (1976), 257–269 | DOI | MR
[7] Neta B., “New third order nonlinear solvers for multiple roots”, Appl. Math. Comput., 202 (2008), 162–170 | MR | Zbl
[8] Osada N., “An optimal multiple root-finding method of order three”, J. Comput. Appl. Math., 51:1 (1994), 131–133 | DOI | MR | Zbl
[9] Sharma R., Bahl A., “General family of third order methods for multiple roots of nonlinear equations and basin attractors for various methods”, Advances in Numerical Analysis, 2014 (2014), 963878 | MR | Zbl
[10] Sharma J. R., Sharma R., “Modified Chebyshev-Halley type method and its variants for computing multiple roots”, Numer. Algor., 61 (2012), 567–578 | DOI | MR | Zbl
[11] Dong C., “A basic theorem of constructing an iterative formula of the higher order for computing multiple roots of an equation”, Math. Numer. Sinica, 11 (1982), 445–450 | MR
[12] Homeier H. H. H., “On Newton-type methods for multiple roots with cubic convergence”, J. Comput. Appl. Math., 231:1 (2009), 249–254 | DOI | MR | Zbl
[13] Kumar S., Kanwar V., Singh S., “On some modified families of multipoint iterative methods for multiple roots of nonlinear equations”, Appl. Math. Comput., 218 (2012), 7382–7394 | MR | Zbl
[14] Li S., Li H., Cheng L., “Some second-derivative-free variants of Halley's method for multiple roots”, Appl. Math. Comput., 215:6 (2009), 2192–2198 | MR | Zbl
[15] Neta B., “New third order nonlinear solvers for multiple roots”, Appl. Math. Comput., 202 (2008), 162–170 | MR | Zbl
[16] Victory H. D., Neta B., “A higher order method for multiple zeros of nonlinear functions”, Inter. J. Comput. Math., 12:3–4 (1983), 329–335 | DOI | MR | Zbl
[17] Zhou X., Chen X., Song Y., “Families of third and fourth order methods for multiple roots of nonlinear equations”, Appl. Math. Comput., 219 (2013), 6030–6038 | MR | Zbl
[18] Dong C., “A family of multipoint iterative functions for finding multiple roots of equations”, Inter. J. Comput. Math., 21:3–4 (1987), 363–367 | DOI | Zbl
[19] Li S.G., Cheng L. Z., Neta B., “Some fourth-order nonlinear solvers with closed formulae for multiple roots”, Comput. Math. Appl., 59:1 (2010), 126–135 | DOI | MR | Zbl
[20] Li S.G., Liao X., Cheng L. Z., “A new fourth-order iterative method for finding multiple roots of nonlinear equations”, Appl. Math. Comput., 215 (2009), 1288–1292 | MR | Zbl
[21] Neta B., “Extension of Murakami's high-order non-linear solver to multiple roots”, Inter. J. Comput. Math., 87:5 (2010), 1023–1031 | DOI | MR | Zbl
[22] Neta B., Johnson A. N., “High-order nonlinear solver for multiple roots”, Comput. Math. Appl., 55:9 (2008), 2012–2017 | DOI | MR | Zbl
[23] Ostrowski A. M., Solution of Equations and Systems of Equations, Academic Press, New York, 1966 | MR | Zbl
[24] Wolfram S., The Mathematica Book, 5-th ed., Wolfram Media, 2003 | MR
[25] Jay L. O., “A note on Q-order of convergence”, BIT Numerical Mathematics, 41 (2001), 422–429 | DOI | MR | Zbl
[26] Scott M., Neta B., Chun C., “Basin attractors for various methods”, Appl. Math. Comput., 218 (2011), 2584–2599 | MR | Zbl
[27] Magrenan A. A., “A new tool to study real dynamics: the convergence plane”, Appl. Math. Comput., 248 (2014), 215–224 | MR | Zbl