Lipschitz-like mapping and its application to convergence analysis of a variant of Newton's method
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 2, pp. 193-212

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ and $Y$ be Banach spaces. Let $f: \Omega\to Y$ be a Fréchet differentiable function on an open subset $\Omega$ of $X$ and $F$ be a set-valued mapping with closed graph. Consider the following generalized equation problem: $0 \in f(x)+F(x)$. In the present paper, we study a variant of Newton's method for solving generalized equation (1) and analyze semilocal and local convergence of this method under weaker conditions than those considered by Jean-Alexis and Piétrus [13]. In fact, we show that the variant of Newton's method is superlinearly convergent when the Frechet derivative of f is $(L,p)$-Hölder continuous and $(f+F)^{-1}$ is Lipzchitz-like at a reference point. Moreover, applications of this method to a nonlinear programming problem and a variational inequality are given. Numerical experiments are provided which illustrate the theoretical results.
@article{SJVM_2021_24_2_a5,
     author = {M. H. Rashid},
     title = {Lipschitz-like mapping and its application to convergence analysis of a variant of {Newton's} method},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {193--212},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_2_a5/}
}
TY  - JOUR
AU  - M. H. Rashid
TI  - Lipschitz-like mapping and its application to convergence analysis of a variant of Newton's method
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2021
SP  - 193
EP  - 212
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2021_24_2_a5/
LA  - ru
ID  - SJVM_2021_24_2_a5
ER  - 
%0 Journal Article
%A M. H. Rashid
%T Lipschitz-like mapping and its application to convergence analysis of a variant of Newton's method
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2021
%P 193-212
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2021_24_2_a5/
%G ru
%F SJVM_2021_24_2_a5
M. H. Rashid. Lipschitz-like mapping and its application to convergence analysis of a variant of Newton's method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 2, pp. 193-212. http://geodesic.mathdoc.fr/item/SJVM_2021_24_2_a5/