A computational model of fluid filtration in fractured porous media
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 2, pp. 145-166.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper discusses a computational 3D double porosity model of a two-phase incompressible fluid filtration in a fractured-porous medium. Conservation laws are formulated in the integral form, and for their spatial approximation, a combination of the mixed finite element method to determine the total flow and pressure velocities is used and the finite volume method to determine the saturations in porous blocks and in fractures. The approximation of equations for saturations according to an explicit scheme with upwinding to eliminate unphysical oscillations is carried out. The model under consideration includes the injection and production wells with total flow rates. For the total velocities and pressures, the Neumann problem is formulated, for which the condition of unique solvability is indicated and a method for solving it without additional conditions is proposed. For an explicit upwind scheme for solving equations for saturations, a weak maximum principle is established, illustrated by computational experiments.
@article{SJVM_2021_24_2_a2,
     author = {M. I. Ivanov and I. A. Kremer and Yu. M. Laevsky},
     title = {A computational model of fluid filtration in fractured porous media},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {145--166},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_2_a2/}
}
TY  - JOUR
AU  - M. I. Ivanov
AU  - I. A. Kremer
AU  - Yu. M. Laevsky
TI  - A computational model of fluid filtration in fractured porous media
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2021
SP  - 145
EP  - 166
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2021_24_2_a2/
LA  - ru
ID  - SJVM_2021_24_2_a2
ER  - 
%0 Journal Article
%A M. I. Ivanov
%A I. A. Kremer
%A Yu. M. Laevsky
%T A computational model of fluid filtration in fractured porous media
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2021
%P 145-166
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2021_24_2_a2/
%G ru
%F SJVM_2021_24_2_a2
M. I. Ivanov; I. A. Kremer; Yu. M. Laevsky. A computational model of fluid filtration in fractured porous media. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 2, pp. 145-166. http://geodesic.mathdoc.fr/item/SJVM_2021_24_2_a2/

[1] Peaceman D. W., Fundamentals of Numerical Reservoir Simulation, Elsevier, Amsterdam, 1977

[2] Dake L. P., Fundamentals of Reservoir Engineering, Developments in Petroleum Science, 8, Elsevier, 1978

[3] Aziz K., Settari A., Petroleum Reservoir Simulation, Applied Science Publishers, London, 1979

[4] Chavent G., Jaffre J., Mathematical Models and Finite Elements for Reservoir Simulation, Elsevier, 1986

[5] Konovalov A. N., Problems of Multiphase Fluid Filtration, World Scientific, 1994 | MR | Zbl

[6] Chen Z., Huan G., Ma Y., Computational Methods for Multiphase Flows in Porous Media, SIAM, Philadelphia, 2006 | MR | Zbl

[7] van Golf-Racht T. D., Fundamentals of Fractured Reservoir Engineering, Developments in Petroleum Science, 12, Elsevier, 1982

[8] Ramirez B., Kazemi H., Al-kobaisi M., Ozkan E., Atan S., “A critical review for proper use of water/oil/gas transfer functions in dual-porosity naturally fractured reservoirs: part I”, SPE Reservoir Evaluation and Engineering, 12:2 (2009), 200–210 | DOI

[9] Al-Kobaisi M., Kazemi H., Ramirez B., Ozkan E., Atan S., “A critical review for proper use of water/oil/gas transfer functions in dual-porosity naturally fractured reservoirs: part II”, SPE Reservoir Evaluation and Engineering, 12:2 (2009), 211–217 | DOI

[10] Lemonnier P., Bourbiaux B., “Simulation of naturally fractured reservoirs. State of the art. Part 1”, Oil Gas Science and Technology - Rev. IFP, 65:2 (2010), 239–262 | DOI

[11] Lemonnier P., Bourbiaux B., “Simulation of naturally fractured reservoirs. State of the art. Part 2”, Oil and Gas Science and Technology - Rev. IFP, 65:2 (2010), 263–286 | DOI

[12] Berre I., Doster F., Keilegavlen E., “Flow in fractured porous media: a review of conceptual models and discretization approaches”, Transport in Porous Media, 130 (2019), 215–236 | DOI | MR

[13] Barenblatt G. I., Zheltov I. P., Kochina I. N., “Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks”, J. of Applied Mathematics and Mechanics, 24:5 (1960), 1286–1303 | DOI | Zbl

[14] Warren J. E., Root P. J., “The behavior of naturally fractured reservoirs”, Society of Petroleum Engineers J., 3:3 (1963), 245–255 | DOI

[15] Kazemi H., Merrill Jr. L.S., Porterfield K. L., Zeman P. R., “Numerical simulation of water-oil flow in naturally fractured reservoirs”, Society of Petroleum Engineers J., 16:6 (1976), 317–326 | DOI

[16] Gilman J. R., Kazemi H., “Improved calculations for viscous and gravity displacement in matrix blocks in dual porosity simulators”, Society of Petroleum Engineers J., 40:1 (1988), 60–70

[17] Douglas Jr. J., Arbogast T., “Dual porosity models for flow in naturally fractured reservoirs”, Dynamics of Fluids in Hierarchical Porous Media, ed. J.H. Cushman, 1990, 177–221

[18] Dmitriev N. M., Maksimov V. M., “Models of flow through fractured-porous anisotropic media”, Fluid Dynamics, 42:6 (2007), 937–942 | DOI | MR | Zbl

[19] Grigoriev A. V., Laevsky Yu. M., Yakovlev P. G., “On a double porosity model of fractured-porous reservoirs based on a hybrid flow function”, Numerical Analysis and Applications, 11:2 (2018), 121–133 | DOI | MR

[20] Zheng H., An-Feng Shi, Zhi-Feng Liu, Xiao-Hong Wang, “A dual-porosity model considering the displacement effect for incompressible two-phase flow”, Inter. J. Numer. Anal. Methods Geomechanics, 44:5 (2020), 691–704 | DOI

[21] Vasil'ev V.I., Vasil'eva M.V., Grigor'ev A.V., Prokop'ev G.A., “Matematicheskoe modelirovanie zadachi dvukhfaznoi fil'tracii v neodnorodnykh treschinovato-poristykh sredakh s ispol'zovaniem modeli dvoinoi poristosti i metoda konechnykh elementov”, Uchenye zapiski Kazanskogo universiteta. Seriya Fiziko-matematicheskie nauki, 160, no. 1, 2018, 165–182 | MR

[22] Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer-Verlag, NY, 1991 | MR | Zbl

[23] Raviart P. A., Thomas J. M., “A mixed finite element method for 2-nd order elliptic problems. Mathematical aspects of finite element methods”, Mathematical Aspects of the Finite Element Method, Lecture Notes in Mathematics, 606, 1977, 292–315 | DOI | MR | Zbl

[24] Ivanov M. I., Kremer I. A., Laevsky Yu. M., “On the streamline upwind scheme of solution to the filtration problem”, Siberian Electronic Mathematical Reports, 16 (2019), 757–776 | MR | Zbl

[25] Chavent G., Jaffre J., Roberts J. E., “Generalized cell-centered finite volume methods: application to two-phase flow in porous media”, Computational Science for the 21st Century, Wiley, 1997, 231–241 | Zbl

[26] Michel A., “A finite volume scheme for two-phase immiscible flow in porous media”, SIAM J. Numer. Anal., 41:4 (2003), 1301–1317 | DOI | MR | Zbl

[27] Elakkad A., Guessous N., Elkhalfi A., “Combined mixed hybrid finite element and finite volume method for flow in porous media”, Inter. J. of Mathematics and Statistics, 7:10 (2010), 24–31 | MR

[28] Nikitin K. D., “Nonlinear finite volume method for two-phase flows”, Matem. Model., 22:11 (2010), 131–147 | MR | Zbl

[29] Buckley S. E., Leverett M. C., “Mechanism of fluid displacement in sands”, Transactions of the AIME, 146:1 (1942), 107–116 | DOI

[30] Sheldon J. W., Zondek B., Cardwell W. T., “One-dimensional, incompressible, noncapillary, two-phase fluid flow in a porous medium”, Transactions of the AIME, 216:1 (1959), 290–296 | DOI

[31] Ivanov M. I., Kremer I. A., Laevsky Yu. M., “On wells modeling in filtration problems”, Siberian Electronic Mathematical Reports, 16 (2019), 1868–1884 | MR | Zbl

[32] Laevsky Yu. M., “A problem with wells for the steady diffusion equation”, Numerical Analysis and Applications, 3:2 (2010), 101–117 | DOI