Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2021_24_2_a0, author = {S. Jha and A. K. B. Chand and M. A. Navascues}, title = {Generalized bivariate {Hermite} fractal interpolation function}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {117--129}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_2_a0/} }
TY - JOUR AU - S. Jha AU - A. K. B. Chand AU - M. A. Navascues TI - Generalized bivariate Hermite fractal interpolation function JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2021 SP - 117 EP - 129 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2021_24_2_a0/ LA - ru ID - SJVM_2021_24_2_a0 ER -
S. Jha; A. K. B. Chand; M. A. Navascues. Generalized bivariate Hermite fractal interpolation function. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 2, pp. 117-129. http://geodesic.mathdoc.fr/item/SJVM_2021_24_2_a0/
[1] Ahlin A. C., “A bivariate generalization of Hermite's interpolation formula”, Math. Comp., 18 (1964), 264–273 | MR | Zbl
[2] Barnsley M. F., “Fractal functions and interpolation”, Constr. Approx., 2:4 (1986), 303–329 | DOI | MR | Zbl
[3] Barnsley M. F., Fractals Everywhere, Academic Press, Boston, 1988 | MR | Zbl
[4] Barnsley M. F., Harrington A. N., “The calculus of fractal interpolation functions”, J. Approx. Theory, 57:1 (1989), 14–34 | DOI | MR | Zbl
[5] Bouboulis P., Dalla L., “Fractal interpolation surfaces derived from fractal interpolation functions”, J. Math. Anal. Appl., 336:2 (2007), 919–936 | DOI | MR | Zbl
[6] Chand A. K. B., Navascues M. A., “Generalized Hermite fractal interpolation”, Rev. R. Acad. Cienc. Zaragoza, 64:2 (2009), 107–120 | MR | Zbl
[7] Chawla M. M., Jayarajan N., “A generalization of Hermite's interpolation formula in two variables”, J. Austral. Math. Soc., 18 (1974), 402–410 | DOI | MR
[8] Ciarlet P. G., Schultz M. H., Varga R. S., “Numerical methods of high-order accuracy for nonlinear boundary value problems. I. One Dimensional Problem”, Numer. Math., 9 (1967), 394–430 | DOI | MR | Zbl
[9] Dalla L., “Bivariate fractal interpolation functions on grids”, Fractals, 10:1 (2002), 53–58 | DOI | MR | Zbl
[10] Drakopoulos V., Manousopoulos P., “Bivariate fractal interpolation surfaces: theory and applications”, Intern. J. Bifur. Chaos, 22:9 (2012), 1250220 | DOI | MR | Zbl
[11] Geronimo J. S., Hardin D., “Fractal interpolation surfaces and a related 2-D multiresolution analysis”, J. Math. Anal. Appl., 176:2 (1993), 561–586 | DOI | MR | Zbl
[12] Massopust P. R., “Fractal surfaces”, J. Math. Anal. Appl., 151:1 (1990), 275–290 | DOI | MR | Zbl
[13] Massopust P. R., “Smooth interpolating curves and surfaces generated by iterated function systems”, Z. Anal. Anwendungen, 12:2 (1993), 201–210 | DOI | MR | Zbl
[14] Navascues M. A., “Fractal polynomial interpolation”, Z. Anal. Anwendungen, 24:2 (2005), 401–418 | DOI | MR | Zbl
[15] Navascues M. A., Sebastian M. V., “Generalization of Hermite functions by fractal interpolation”, J. Approx. Theory, 131:1 (2004), 19–29 | DOI | MR | Zbl
[16] Navascues M. A., Sebastian M. V., “Smooth fractal interpolation”, J. Inequal. Appl., 20 (2006), 78734 | DOI | MR | Zbl
[17] Samuel M., Tetenov A. V., “On attractors of iterated function systems in uniform spaces”, Sib. Elektron. Mat. Izv., 14 (2017), 151–155 | MR | Zbl
[18] Spitzbart A., “A generalization of Hermite's interpolation formula”, Amer. Math. Monthly, 67 (1960), 42–46 | DOI | MR | Zbl
[19] Stoer J., Bulirsch R., Introduction to Numerical Analysis, Springer-Verlag, 1980 | MR | Zbl
[20] Tetenov A. V., “On self-similar Jordan arcs on a plane”, Sib. Zh. Ind. Mat., 7:3 (2004), 148–155 | MR | Zbl
[21] Tetenov A. V., “Self-similar jordan arcs and the graph directed systems of similarities”, Siberian Math. J., 47:5 (2006), 940–949 | DOI | MR | Zbl
[22] Viswanathan P., Navascues M. A., Chand A. K. B., “Associate fractal functions in Lp-spaces and in one-sided uniform approximation”, J. Math. Anal. Appl., 433:2 (2016), 862–876 | DOI | MR | Zbl
[23] Viswanathan P., Navascues M. A., Chand A. K. B., “Fractal polynomials and maps in approximation of continuous functions”, Numer. Funct. Anal. Optim., 37:1 (2016), 106–127 | DOI | MR | Zbl
[24] Xie H., Sun H., “The study on bivariate fractal interpolation functions and creation of fractal interpolated surfaces”, Fractals, 5:4 (1997), 625–634 | DOI | MR | Zbl
[25] Zhao N., “Construction and application of fractal interpolation surfaces”, The Visual Computer, 12:3 (1996), 132–146 | DOI