Generalized bivariate Hermite fractal interpolation function
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 2, pp. 117-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

Fractal interpolation provides an efficient way to describe the smooth or non-smooth structure associated with nature and scientific data. The aim of this paper is to introduce a bivariate Hermite fractal interpolation formula which generalizes the classical Hermite interpolation formula for two variables. It is shown here that the proposed Hermite fractal interpolation function and its derivatives of all orders are good approximations of the original function even if the partial derivatives of the original functions are non-smooth in nature.
@article{SJVM_2021_24_2_a0,
     author = {S. Jha and A. K. B. Chand and M. A. Navascues},
     title = {Generalized bivariate {Hermite} fractal interpolation function},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {117--129},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_2_a0/}
}
TY  - JOUR
AU  - S. Jha
AU  - A. K. B. Chand
AU  - M. A. Navascues
TI  - Generalized bivariate Hermite fractal interpolation function
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2021
SP  - 117
EP  - 129
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2021_24_2_a0/
LA  - ru
ID  - SJVM_2021_24_2_a0
ER  - 
%0 Journal Article
%A S. Jha
%A A. K. B. Chand
%A M. A. Navascues
%T Generalized bivariate Hermite fractal interpolation function
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2021
%P 117-129
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2021_24_2_a0/
%G ru
%F SJVM_2021_24_2_a0
S. Jha; A. K. B. Chand; M. A. Navascues. Generalized bivariate Hermite fractal interpolation function. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 2, pp. 117-129. http://geodesic.mathdoc.fr/item/SJVM_2021_24_2_a0/

[1] Ahlin A. C., “A bivariate generalization of Hermite's interpolation formula”, Math. Comp., 18 (1964), 264–273 | MR | Zbl

[2] Barnsley M. F., “Fractal functions and interpolation”, Constr. Approx., 2:4 (1986), 303–329 | DOI | MR | Zbl

[3] Barnsley M. F., Fractals Everywhere, Academic Press, Boston, 1988 | MR | Zbl

[4] Barnsley M. F., Harrington A. N., “The calculus of fractal interpolation functions”, J. Approx. Theory, 57:1 (1989), 14–34 | DOI | MR | Zbl

[5] Bouboulis P., Dalla L., “Fractal interpolation surfaces derived from fractal interpolation functions”, J. Math. Anal. Appl., 336:2 (2007), 919–936 | DOI | MR | Zbl

[6] Chand A. K. B., Navascues M. A., “Generalized Hermite fractal interpolation”, Rev. R. Acad. Cienc. Zaragoza, 64:2 (2009), 107–120 | MR | Zbl

[7] Chawla M. M., Jayarajan N., “A generalization of Hermite's interpolation formula in two variables”, J. Austral. Math. Soc., 18 (1974), 402–410 | DOI | MR

[8] Ciarlet P. G., Schultz M. H., Varga R. S., “Numerical methods of high-order accuracy for nonlinear boundary value problems. I. One Dimensional Problem”, Numer. Math., 9 (1967), 394–430 | DOI | MR | Zbl

[9] Dalla L., “Bivariate fractal interpolation functions on grids”, Fractals, 10:1 (2002), 53–58 | DOI | MR | Zbl

[10] Drakopoulos V., Manousopoulos P., “Bivariate fractal interpolation surfaces: theory and applications”, Intern. J. Bifur. Chaos, 22:9 (2012), 1250220 | DOI | MR | Zbl

[11] Geronimo J. S., Hardin D., “Fractal interpolation surfaces and a related 2-D multiresolution analysis”, J. Math. Anal. Appl., 176:2 (1993), 561–586 | DOI | MR | Zbl

[12] Massopust P. R., “Fractal surfaces”, J. Math. Anal. Appl., 151:1 (1990), 275–290 | DOI | MR | Zbl

[13] Massopust P. R., “Smooth interpolating curves and surfaces generated by iterated function systems”, Z. Anal. Anwendungen, 12:2 (1993), 201–210 | DOI | MR | Zbl

[14] Navascues M. A., “Fractal polynomial interpolation”, Z. Anal. Anwendungen, 24:2 (2005), 401–418 | DOI | MR | Zbl

[15] Navascues M. A., Sebastian M. V., “Generalization of Hermite functions by fractal interpolation”, J. Approx. Theory, 131:1 (2004), 19–29 | DOI | MR | Zbl

[16] Navascues M. A., Sebastian M. V., “Smooth fractal interpolation”, J. Inequal. Appl., 20 (2006), 78734 | DOI | MR | Zbl

[17] Samuel M., Tetenov A. V., “On attractors of iterated function systems in uniform spaces”, Sib. Elektron. Mat. Izv., 14 (2017), 151–155 | MR | Zbl

[18] Spitzbart A., “A generalization of Hermite's interpolation formula”, Amer. Math. Monthly, 67 (1960), 42–46 | DOI | MR | Zbl

[19] Stoer J., Bulirsch R., Introduction to Numerical Analysis, Springer-Verlag, 1980 | MR | Zbl

[20] Tetenov A. V., “On self-similar Jordan arcs on a plane”, Sib. Zh. Ind. Mat., 7:3 (2004), 148–155 | MR | Zbl

[21] Tetenov A. V., “Self-similar jordan arcs and the graph directed systems of similarities”, Siberian Math. J., 47:5 (2006), 940–949 | DOI | MR | Zbl

[22] Viswanathan P., Navascues M. A., Chand A. K. B., “Associate fractal functions in Lp-spaces and in one-sided uniform approximation”, J. Math. Anal. Appl., 433:2 (2016), 862–876 | DOI | MR | Zbl

[23] Viswanathan P., Navascues M. A., Chand A. K. B., “Fractal polynomials and maps in approximation of continuous functions”, Numer. Funct. Anal. Optim., 37:1 (2016), 106–127 | DOI | MR | Zbl

[24] Xie H., Sun H., “The study on bivariate fractal interpolation functions and creation of fractal interpolated surfaces”, Fractals, 5:4 (1997), 625–634 | DOI | MR | Zbl

[25] Zhao N., “Construction and application of fractal interpolation surfaces”, The Visual Computer, 12:3 (1996), 132–146 | DOI