On the numerical solution of the generalized Burgers-Huxley equation by Lie-Trotter splitting method
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 1, pp. 103-116

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the Lie-Trotter splitting method (LSM) is used to solve the generalized Burgers-Huxley equation (GBHE) numerically. We first establish the local error bounds of approximate solutions of the GBHE with the help of the theory of differential operators in a Banach space. Then we prove the global convergence by using a telescoping identity. At the end, the accuracy of the method is provided by numerical results which are compared with earlier studies.
@article{SJVM_2021_24_1_a8,
     author = {Y. \v{C}i\v{c}ek and S. Korkut},
     title = {On the numerical solution of the generalized {Burgers-Huxley} equation by {Lie-Trotter} splitting method},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {103--116},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_1_a8/}
}
TY  - JOUR
AU  - Y. Čiček
AU  - S. Korkut
TI  - On the numerical solution of the generalized Burgers-Huxley equation by Lie-Trotter splitting method
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2021
SP  - 103
EP  - 116
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2021_24_1_a8/
LA  - ru
ID  - SJVM_2021_24_1_a8
ER  - 
%0 Journal Article
%A Y. Čiček
%A S. Korkut
%T On the numerical solution of the generalized Burgers-Huxley equation by Lie-Trotter splitting method
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2021
%P 103-116
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2021_24_1_a8/
%G ru
%F SJVM_2021_24_1_a8
Y. Čiček; S. Korkut. On the numerical solution of the generalized Burgers-Huxley equation by Lie-Trotter splitting method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 1, pp. 103-116. http://geodesic.mathdoc.fr/item/SJVM_2021_24_1_a8/