On the numerical solution of the generalized Burgers-Huxley equation by Lie-Trotter splitting method
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 1, pp. 103-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the Lie-Trotter splitting method (LSM) is used to solve the generalized Burgers-Huxley equation (GBHE) numerically. We first establish the local error bounds of approximate solutions of the GBHE with the help of the theory of differential operators in a Banach space. Then we prove the global convergence by using a telescoping identity. At the end, the accuracy of the method is provided by numerical results which are compared with earlier studies.
@article{SJVM_2021_24_1_a8,
     author = {Y. \v{C}i\v{c}ek and S. Korkut},
     title = {On the numerical solution of the generalized {Burgers-Huxley} equation by {Lie-Trotter} splitting method},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {103--116},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_1_a8/}
}
TY  - JOUR
AU  - Y. Čiček
AU  - S. Korkut
TI  - On the numerical solution of the generalized Burgers-Huxley equation by Lie-Trotter splitting method
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2021
SP  - 103
EP  - 116
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2021_24_1_a8/
LA  - ru
ID  - SJVM_2021_24_1_a8
ER  - 
%0 Journal Article
%A Y. Čiček
%A S. Korkut
%T On the numerical solution of the generalized Burgers-Huxley equation by Lie-Trotter splitting method
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2021
%P 103-116
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2021_24_1_a8/
%G ru
%F SJVM_2021_24_1_a8
Y. Čiček; S. Korkut. On the numerical solution of the generalized Burgers-Huxley equation by Lie-Trotter splitting method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 1, pp. 103-116. http://geodesic.mathdoc.fr/item/SJVM_2021_24_1_a8/

[1] Al-Rozbayani A. M., Al-Amr M. O., “Discrete adomian decomposition method for solving Burgers-Huxley equation”, Int. J. Contemp. Math. Sciences, 8 (2013), 623–631 | DOI | MR

[2] Batiha B., Noorani S. M., Hashim I., “Numerical simulation of the generalized Huxley equation by He's variational iteration method”, Applied Mathematics and Computation, 186 (2007), 1322–1325 | DOI | MR | Zbl

[3] Batiha B., Noorani M. S. M., Hashim I., “Application of variational iteration method to the generalized Burgers-Huxley equation”, Chaos, Solitons Fractals, 36 (2008), 660–663 | DOI | Zbl

[4] Biazar J., Mohammadi F., “Application of differential transform method to the generalized Burgers-Huxley equation”, Int. J. Applications and Applied Mathematics, 5 (2010), 629–643 | MR

[5] Çiçek Y., Tanoğlu G., “Strang splitting method for Burgers-Huxley equation”, Applied Mathematics and Computation, 276 (2016), 454–467 | DOI | MR | Zbl

[6] Fitzhugh R., “Mathematical models of excitation and propagation in nerve”, Biological Engineering, ed. H.P. Schwan, McGraw Hill, N.Y., 1969, 1–85

[7] Hammad D. A., El-Azab M. S., “2N order compact finite difference scheme with collocation method for solving the generalized Burgers-Huxley and Burgers-Fisher equations”, Applied Mathematics and Computation, 258 (2015), 296–311 | DOI | MR | Zbl

[8] Hairer E., Norsett S. P., Wanner G., Solving Ordinary Differential Equations, v. I, Nonstiff Problems, Springer-Verlag, Berlin–Heidelberg, 1993 | MR | Zbl

[9] Hashim I., Noorani M. S. M., Said Al-Hadidi M. R., “Solving the generalized Burgers-Huxley equation using the Adomian decomposition method”, Mathematical and Computer Modelling, 43 (2006), 1404–1411 | DOI | MR | Zbl

[10] Hodgkin A. L., Huxley A. F., “A quantitative description of ion currents and its applications to conduction and excitation in nerve membranes”, J. of Physiology, 117 (1952), 500–544 | DOI

[11] Ismail H. N. A., Raslan K., Abd-Rabboh A. A., “Adomian decomposition method for Burgers-Huxley and Burgers-Fisher equations”, Applied Mathematics and Computation, 159 (2004), 291–301 | DOI | MR | Zbl

[12] Javidi M., “A numerical solution of the generalized Burgers-Huxley equation by pseudospectral method and Darvishi's preconditioning”, Applied Mathematics and Computation, 175 (2006), 1619–1628 | DOI | MR | Zbl

[13] Javidi M., “A numerical solution of the generalized Burgers-Huxley equation by spectral collocation method”, Applied Mathematics and Computation, 178 (2006), 338–344 | DOI | MR | Zbl

[14] Khattak A. J., “A computational meshless method for the generalized Burgers-Huxley equation”, Applied Mathematical Modelling, 33 (2009), 3718–3729 | DOI | MR | Zbl

[15] Sari M., Gürarslan G., “Numerical solutions of the generalized Burgers-Huxley equation by a differential quadrature method”, Mathematical Problems in Engineering, 2009 (2009), 370765 | MR | Zbl

[16] Sari M., Gürarslan G., Zeytinoğlu A., “High-order finite difference schemes for numerical solutions of the generalized Burgers-Huxley equation”, Num. Methods for Partial Diff. Equ., 27 (2011), 1313–1326 | DOI | MR | Zbl

[17] Singh B. K., Arora G., Singh M. K., “A numerical scheme for the generalized Burgers-Huxley equation”, J. of the Egyptian Mathematical Society, 24 (2016), 629–637 | DOI | MR | Zbl

[18] Wang X. Y., Zhu Z. S., Lu Y. K., “Solitary wave solutions of the generalized Burgers-Huxley equation”, J. Phys. A: Math. Gen., 23 (1990), 271–274 | DOI | MR | Zbl

[19] Wazwaz A. M., “Traveling wave solutions of generalized forms of Burgers, Burgers-KdV and Burgers-Huxley equations”, Applied Mathematics and Computation, 169 (2005), 639–656 | DOI | MR | Zbl

[20] Zhou S., Cheng X., “A linearly semi-implicit compact scheme for the Burgers-Huxley equation”, Int. J. of Computer Mathematics, 88 (2011), 795–804 | DOI | MR | Zbl

[21] Zürnacı F., Gücüyenen Kaymak N., Seydaoğlu M., Tanoğlu G., “Convergence analysis and numerical solution of the Benjamin-Bona-Mahony equation by Lie-Trotter splitting”, Turkish J. of Mathematics, 42 (2018), 1471–1483 | MR | Zbl