Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2021_24_1_a6, author = {V. D. Liseikin and V. I. Paasonen}, title = {Adaptive grids and high-order schemes for solving singularly-perturbed problems}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {77--92}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_1_a6/} }
TY - JOUR AU - V. D. Liseikin AU - V. I. Paasonen TI - Adaptive grids and high-order schemes for solving singularly-perturbed problems JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2021 SP - 77 EP - 92 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2021_24_1_a6/ LA - ru ID - SJVM_2021_24_1_a6 ER -
%0 Journal Article %A V. D. Liseikin %A V. I. Paasonen %T Adaptive grids and high-order schemes for solving singularly-perturbed problems %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2021 %P 77-92 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2021_24_1_a6/ %G ru %F SJVM_2021_24_1_a6
V. D. Liseikin; V. I. Paasonen. Adaptive grids and high-order schemes for solving singularly-perturbed problems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 1, pp. 77-92. http://geodesic.mathdoc.fr/item/SJVM_2021_24_1_a6/
[1] “On the Optimization of the Methods for Solving Boundary Value Problems in the Presence of a Boundary Layer”, J. Comput. Maths. Math. Phys., 9:4 (Bakhvalov N.S.), 139–166 | MR | Zbl
[2] Shishkin G.I., “A Difference scheme for a singularly perturbed equation of parabolic type with a discontinuous initial condition”, Dokl. Math., 37:3 (1988), 792–796 | MR | Zbl
[3] Liseikin V.D., Paasonen V.I., “Compact difference schemes and layer-resolving grids for numerical modeling of problems with boundary and interior layers”, Numerical Analysis and Applications, 12:1 (2019), 37–50 | DOI | MR | MR
[4] V. D. Liseikin, Layer Resolving Grids and Transformations for Singular Perturbation Problems, VSP, Utrecht, 2001
[5] V. I. Paasonen, “Kompaktnye skhemy tret'ego poryadka tochnosti na neravnomernykh adaptivnykh setkakh”, Vychislitel'nye tekhnologii, 20:2 (2015), 56–64 | Zbl
[6] V. I. Paasonen, “Skhema tret'ego poryadka approksimatsii na neravnomernoi setke dlya uravnenii Nav'e-Stoksa”, Vychislitel'nye tekhnologii, 5:5 (2000), 78–85 | MR | Zbl
[7] A. S. Glukhovskii, V. I. Paasonen, “Kompaktnye raznostnye skhemy dlya uravnenii Nav'e-Stoksa na neravnomernykh setkakh”, Marchukovskie nauchnye chteniya-2017. Tr. Mezhdunar. nauch. konf. “Vychislitel'naya i prikladnaya matematika 2017” (25–30 iyunya 2017 g.), Izd-vo IVMiMG SO RAN, Novosibirsk, 2017, 211–217
[8] Liseikin V.D., “On the numerical solution of singularly perturbed equations with a turning point”, J. Comput. Maths. Math. Phys., 26:6 (1986), 133–139 | DOI | MR | MR
[9] P. Vulanovic̀, “Mesh construction for numerical solution of a type of singular perturbation problems”, Numer. Meth. Approx. Theory, University of Nis̆, 1984, 137–142 | MR
[10] P.Ya. Polubarinova-Kochina, Teoriya dvizheniya gruntovykh vod, Nauka, M., 1977 | MR
[11] K. I. Zamaraev, R. F. Khairutdinov, V. P. Zhdanov, Tunnelirovanie elektronov v khimii: Khimicheskie reaktsii na bol'shikh rasstoyaniyakh, Nauka, Novosibirsk, 1985