A priori error estimates and superconvergence of $P_0^2-P_1$ mixed finite element methods for elliptic boundary control problems
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 1, pp. 63-76

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss a priori error estimates and superconvergence of $P_0^2-P_1$ mixed finite element methods for elliptic boundary control problems. The state variables and co-state variables are approximated by a $P_0^2-P_1$ (velocity-pressure) pair and the control variable is approximated by piecewise constant functions. First, we derive a priori error estimates for the control variable, the state variables and the co-state variables. Then we obtain a superconvergence result for the control variable by using postprocessing projection operator.
@article{SJVM_2021_24_1_a5,
     author = {C. Xu},
     title = {A priori error estimates and superconvergence of $P_0^2-P_1$ mixed finite element methods for elliptic boundary control problems},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {63--76},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_1_a5/}
}
TY  - JOUR
AU  - C. Xu
TI  - A priori error estimates and superconvergence of $P_0^2-P_1$ mixed finite element methods for elliptic boundary control problems
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2021
SP  - 63
EP  - 76
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2021_24_1_a5/
LA  - ru
ID  - SJVM_2021_24_1_a5
ER  - 
%0 Journal Article
%A C. Xu
%T A priori error estimates and superconvergence of $P_0^2-P_1$ mixed finite element methods for elliptic boundary control problems
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2021
%P 63-76
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2021_24_1_a5/
%G ru
%F SJVM_2021_24_1_a5
C. Xu. A priori error estimates and superconvergence of $P_0^2-P_1$ mixed finite element methods for elliptic boundary control problems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 1, pp. 63-76. http://geodesic.mathdoc.fr/item/SJVM_2021_24_1_a5/