Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2021_24_1_a4, author = {N. Gupta and J. P. Jaiswal}, title = {Semilocal convergence of {Modified} {Chebyshev-Halley} method for nonlinear operators in case of unbounded third derivative}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {47--61}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_1_a4/} }
TY - JOUR AU - N. Gupta AU - J. P. Jaiswal TI - Semilocal convergence of Modified Chebyshev-Halley method for nonlinear operators in case of unbounded third derivative JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2021 SP - 47 EP - 61 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2021_24_1_a4/ LA - ru ID - SJVM_2021_24_1_a4 ER -
%0 Journal Article %A N. Gupta %A J. P. Jaiswal %T Semilocal convergence of Modified Chebyshev-Halley method for nonlinear operators in case of unbounded third derivative %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2021 %P 47-61 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2021_24_1_a4/ %G ru %F SJVM_2021_24_1_a4
N. Gupta; J. P. Jaiswal. Semilocal convergence of Modified Chebyshev-Halley method for nonlinear operators in case of unbounded third derivative. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 1, pp. 47-61. http://geodesic.mathdoc.fr/item/SJVM_2021_24_1_a4/
[1] J. M. Ortega, W. C. Rheinboldt, Iterative Solution of Nonlinear Equation in Several Variables, Academic Press, New York–London, 1970 | MR
[2] J. F. Traub, Iterative Methods for the Solution of Equations, Prentice-Hall, New Jersey, 1964 | MR | Zbl
[3] A. M. Ostrowski, Solution of Equations and System of Equations, Academic Press, New York, 1960 | MR
[4] P. Jarratt, “Some fourth order multipoint methods for solving equations”, Math. Comput., 20 (1966), 434–437 | DOI | MR | Zbl
[5] P. Jarratt, “Some efficient fourth order multipoint methods for solving equations”, BIT, 9 (1969), 119–124 | DOI | MR | Zbl
[6] H. T. Kung, J. F. Traub, “Optimal order of one-point and multipoint iteration”, J. ACM, 21 (1974), 643–651 | DOI | MR | Zbl
[7] B. Neta, “A sixth-order family of methods for nonlinear equations”, Int. J. Comput. Math., 7 (1979), 157–161 | DOI | MR
[8] D. B. Popovski, “A family of one-point iteration formulae for finding roots”, Int. J. Comput. Math., 8 (1980), 85–88 | DOI | Zbl
[9] B. Neta, “On a family of multipoint methods for nonlinear equations”, Int. J. Comput. Math., 9 (1981), 353–361 | DOI | MR | Zbl
[10] M. K. Jain, “Fifth order implicit multipoint method for solving equations”, BIT, 25 (1985), 250–255 | DOI | MR | Zbl
[11] L. V. Kantorovich, G. P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982 | MR | Zbl
[12] L. B. Rall, Computational Solution of Nonlinear Operator Equations, Robert E Krieger, New York, 1979 | MR | Zbl
[13] X. Wang, C. Gu, J. Kou, “Semilocal convergence of a multipoint fourth-order Super-Halley method in Banach spaces”, Numer. Algor., 56 (2011), 497–516 | DOI | MR | Zbl
[14] X. Wang, J. Kou, C. Gu, “Semilocal convergence of a sixth-order Jarratt method in Banach spaces”, Numer. Algor., 57 (2011), 441–456 | DOI | MR | Zbl
[15] S. Singh, D. K. Gupta, E. Martínez, J. L. Hueso, “Semilocal convergence analysis of an iteration of order five using recurrence relations in Banach spaces”, Mediterr. J. Math., 13 (2016), 4219–4235 | DOI | MR | Zbl
[16] J. P. Jaiswal, “Semilocal convergence of an eighth-order method in Banach spaces and its computational efficiency”, Numer. Algor., 71 (2016), 933–951 | DOI | MR | Zbl
[17] M. A. Hernández, “Chebyshev's approximation algorithms and applications”, Comput. Math. Appl., 41:3–4 (2001), 433–445 | DOI | MR | Zbl
[18] P. K. Parida, D. K. Gupta, “Recurrence relations for semilocal convergence of a Newton-like method in Banach spaces”, J. Math. Anal. Appl., 345:1 (2008), 350–361 | DOI | MR | Zbl
[19] P. K. Parida, D. K. Gupta, “Semilocal convergence of a family of third-order methods in Banach spaces under Hölder continuous second derivative”, Non. Anal. Theo. Meth. Appl., 69:11 (2008), 4163–4173 | DOI | MR | Zbl
[20] X. Wang, J. Kou, “Convergence for modified Halley-like methods with less computation of inversion”, J. Diff. Eqn. Appl., 19:9 (2013), 1483–1500 | DOI | MR | Zbl
[21] J. A. Ezquerro, M. A. Hernández, “On the R-order of the Halley method”, J. Math. Anal. Appl., 303:2 (2005), 591–601 | DOI | MR | Zbl
[22] J. A. Ezquerro, M. A. Hernández, “A generalization of the Kantorovich type assumptions for Halley's method”, Int. J. Comput. Math., 84:12 (2007), 1771–1779 | DOI | MR | Zbl
[23] P. K. Parida, D. K. Gupta, “Semilocal convergence of a family of third-order Chebyshev-type methods under a mild differentiability condition”, Int. J. Comput. Math., 87:15 (2010), 3405–3419 | DOI | MR | Zbl
[24] P. K. Parida, D. K. Gupta, S. K. Parhi, “On Semilocal convergence of a multipoint third order method with $R$-order $(2 + p)$ under a mild differentiability condition”, J. Appl. Math. Inf., 31:3–4 (2013), 399–416 | MR | Zbl
[25] M. Prashanth, D. K. Gupta, “Convergence of a parametric continuation method”, Kodai Math. J., 37:1 (2014), 212–234 | DOI | MR | Zbl
[26] M. Prashanth, D. K. Gupta, “Semilocal convergence for Super-Halley's method under $\omega$-differentiability condition”, Japan J. Indust. Appl. Math., 32:1 (2015), 77–94 | DOI | MR | Zbl
[27] X. Wang, J. Kou, “Semilocal convergence of multi-point improved Super-Halley-type methods without the second derivative under generalized weak condition”, Numer. Algor., 71:3 (2016), 567–584 | DOI | MR | Zbl
[28] X. Wang, J. Kou, “Semilocal convergence analysis on the modifications for Chebyshev-Halley methods under generalized condition”, Appl. Math. Comp., 281 (2016), 243–251 | DOI | MR | Zbl
[29] X. Wang, J. Kou, “Semilocal convergence on a family of root-finding multi-point methods in Banach spaces under relaxed continuity condition”, Numer. Algor, 74 (2017), 643–657 | DOI | MR | Zbl
[30] R. A. Castro, J. C. Rodríguez, W. W. Sierra, G. L. Di Giorgi, S. J. Gomez, “Chebyshev-Halley's method on Riemannian manifolds”, J. Comput. Appl. Math., 336 (2018), 30–53 | DOI | MR | Zbl
[31] X. Wang, J. Kou, “Semilocal convergence and $R$-order for modified Chebyshev-Halley methods”, Numer. Algor., 64 (2012), 105–126 | DOI | MR
[32] X. Wang, J. Kou, “Convergence for a class of improved sixth-order Chebyshev-Halley type method”, Appl. Math. Comput., 273 (2016), 513–524 | MR | Zbl
[33] X. Wang, J. Kou, “Convergence for a family of modified Chebyshev methods under weak condition”, Numer. Algor., 66 (2014), 33–48 | DOI | MR | Zbl