Semilocal convergence of Modified Chebyshev-Halley method for nonlinear operators in case of unbounded third derivative
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 1, pp. 47-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present discussion, we analyze the semilocal convergence of a class of modified Chebyshev-Halley methods under two different sets of assumptions. In the first set, we just assumed the bound of the second order Fréchet derivative in lieu of the third order. In the second set of hypotheses, the bound of the norm of the third order Fréchet derivative is assumed at initial iterate preferably supposed it earlier on the domain of the given operator along with fulfillment of the local $\omega$-continuity in order to prove the convergence, existence and uniqueness followed by a priori error bound. Two numerical experiments strongly support the theory included in this paper.
@article{SJVM_2021_24_1_a4,
     author = {N. Gupta and J. P. Jaiswal},
     title = {Semilocal convergence of {Modified} {Chebyshev-Halley} method for nonlinear operators in case of unbounded third derivative},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {47--61},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_1_a4/}
}
TY  - JOUR
AU  - N. Gupta
AU  - J. P. Jaiswal
TI  - Semilocal convergence of Modified Chebyshev-Halley method for nonlinear operators in case of unbounded third derivative
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2021
SP  - 47
EP  - 61
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2021_24_1_a4/
LA  - ru
ID  - SJVM_2021_24_1_a4
ER  - 
%0 Journal Article
%A N. Gupta
%A J. P. Jaiswal
%T Semilocal convergence of Modified Chebyshev-Halley method for nonlinear operators in case of unbounded third derivative
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2021
%P 47-61
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2021_24_1_a4/
%G ru
%F SJVM_2021_24_1_a4
N. Gupta; J. P. Jaiswal. Semilocal convergence of Modified Chebyshev-Halley method for nonlinear operators in case of unbounded third derivative. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 1, pp. 47-61. http://geodesic.mathdoc.fr/item/SJVM_2021_24_1_a4/

[1] J. M. Ortega, W. C. Rheinboldt, Iterative Solution of Nonlinear Equation in Several Variables, Academic Press, New York–London, 1970 | MR

[2] J. F. Traub, Iterative Methods for the Solution of Equations, Prentice-Hall, New Jersey, 1964 | MR | Zbl

[3] A. M. Ostrowski, Solution of Equations and System of Equations, Academic Press, New York, 1960 | MR

[4] P. Jarratt, “Some fourth order multipoint methods for solving equations”, Math. Comput., 20 (1966), 434–437 | DOI | MR | Zbl

[5] P. Jarratt, “Some efficient fourth order multipoint methods for solving equations”, BIT, 9 (1969), 119–124 | DOI | MR | Zbl

[6] H. T. Kung, J. F. Traub, “Optimal order of one-point and multipoint iteration”, J. ACM, 21 (1974), 643–651 | DOI | MR | Zbl

[7] B. Neta, “A sixth-order family of methods for nonlinear equations”, Int. J. Comput. Math., 7 (1979), 157–161 | DOI | MR

[8] D. B. Popovski, “A family of one-point iteration formulae for finding roots”, Int. J. Comput. Math., 8 (1980), 85–88 | DOI | Zbl

[9] B. Neta, “On a family of multipoint methods for nonlinear equations”, Int. J. Comput. Math., 9 (1981), 353–361 | DOI | MR | Zbl

[10] M. K. Jain, “Fifth order implicit multipoint method for solving equations”, BIT, 25 (1985), 250–255 | DOI | MR | Zbl

[11] L. V. Kantorovich, G. P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982 | MR | Zbl

[12] L. B. Rall, Computational Solution of Nonlinear Operator Equations, Robert E Krieger, New York, 1979 | MR | Zbl

[13] X. Wang, C. Gu, J. Kou, “Semilocal convergence of a multipoint fourth-order Super-Halley method in Banach spaces”, Numer. Algor., 56 (2011), 497–516 | DOI | MR | Zbl

[14] X. Wang, J. Kou, C. Gu, “Semilocal convergence of a sixth-order Jarratt method in Banach spaces”, Numer. Algor., 57 (2011), 441–456 | DOI | MR | Zbl

[15] S. Singh, D. K. Gupta, E. Martínez, J. L. Hueso, “Semilocal convergence analysis of an iteration of order five using recurrence relations in Banach spaces”, Mediterr. J. Math., 13 (2016), 4219–4235 | DOI | MR | Zbl

[16] J. P. Jaiswal, “Semilocal convergence of an eighth-order method in Banach spaces and its computational efficiency”, Numer. Algor., 71 (2016), 933–951 | DOI | MR | Zbl

[17] M. A. Hernández, “Chebyshev's approximation algorithms and applications”, Comput. Math. Appl., 41:3–4 (2001), 433–445 | DOI | MR | Zbl

[18] P. K. Parida, D. K. Gupta, “Recurrence relations for semilocal convergence of a Newton-like method in Banach spaces”, J. Math. Anal. Appl., 345:1 (2008), 350–361 | DOI | MR | Zbl

[19] P. K. Parida, D. K. Gupta, “Semilocal convergence of a family of third-order methods in Banach spaces under Hölder continuous second derivative”, Non. Anal. Theo. Meth. Appl., 69:11 (2008), 4163–4173 | DOI | MR | Zbl

[20] X. Wang, J. Kou, “Convergence for modified Halley-like methods with less computation of inversion”, J. Diff. Eqn. Appl., 19:9 (2013), 1483–1500 | DOI | MR | Zbl

[21] J. A. Ezquerro, M. A. Hernández, “On the R-order of the Halley method”, J. Math. Anal. Appl., 303:2 (2005), 591–601 | DOI | MR | Zbl

[22] J. A. Ezquerro, M. A. Hernández, “A generalization of the Kantorovich type assumptions for Halley's method”, Int. J. Comput. Math., 84:12 (2007), 1771–1779 | DOI | MR | Zbl

[23] P. K. Parida, D. K. Gupta, “Semilocal convergence of a family of third-order Chebyshev-type methods under a mild differentiability condition”, Int. J. Comput. Math., 87:15 (2010), 3405–3419 | DOI | MR | Zbl

[24] P. K. Parida, D. K. Gupta, S. K. Parhi, “On Semilocal convergence of a multipoint third order method with $R$-order $(2 + p)$ under a mild differentiability condition”, J. Appl. Math. Inf., 31:3–4 (2013), 399–416 | MR | Zbl

[25] M. Prashanth, D. K. Gupta, “Convergence of a parametric continuation method”, Kodai Math. J., 37:1 (2014), 212–234 | DOI | MR | Zbl

[26] M. Prashanth, D. K. Gupta, “Semilocal convergence for Super-Halley's method under $\omega$-differentiability condition”, Japan J. Indust. Appl. Math., 32:1 (2015), 77–94 | DOI | MR | Zbl

[27] X. Wang, J. Kou, “Semilocal convergence of multi-point improved Super-Halley-type methods without the second derivative under generalized weak condition”, Numer. Algor., 71:3 (2016), 567–584 | DOI | MR | Zbl

[28] X. Wang, J. Kou, “Semilocal convergence analysis on the modifications for Chebyshev-Halley methods under generalized condition”, Appl. Math. Comp., 281 (2016), 243–251 | DOI | MR | Zbl

[29] X. Wang, J. Kou, “Semilocal convergence on a family of root-finding multi-point methods in Banach spaces under relaxed continuity condition”, Numer. Algor, 74 (2017), 643–657 | DOI | MR | Zbl

[30] R. A. Castro, J. C. Rodríguez, W. W. Sierra, G. L. Di Giorgi, S. J. Gomez, “Chebyshev-Halley's method on Riemannian manifolds”, J. Comput. Appl. Math., 336 (2018), 30–53 | DOI | MR | Zbl

[31] X. Wang, J. Kou, “Semilocal convergence and $R$-order for modified Chebyshev-Halley methods”, Numer. Algor., 64 (2012), 105–126 | DOI | MR

[32] X. Wang, J. Kou, “Convergence for a class of improved sixth-order Chebyshev-Halley type method”, Appl. Math. Comput., 273 (2016), 513–524 | MR | Zbl

[33] X. Wang, J. Kou, “Convergence for a family of modified Chebyshev methods under weak condition”, Numer. Algor., 66 (2014), 33–48 | DOI | MR | Zbl