Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2021_24_1_a1, author = {P. A. Bakhvalov and M. D. Surnachev}, title = {On analytical families of matrices generating bounded semigroups}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {3--16}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_1_a1/} }
TY - JOUR AU - P. A. Bakhvalov AU - M. D. Surnachev TI - On analytical families of matrices generating bounded semigroups JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2021 SP - 3 EP - 16 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2021_24_1_a1/ LA - ru ID - SJVM_2021_24_1_a1 ER -
P. A. Bakhvalov; M. D. Surnachev. On analytical families of matrices generating bounded semigroups. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 1, pp. 3-16. http://geodesic.mathdoc.fr/item/SJVM_2021_24_1_a1/
[1] T. Kato, “Perturbation theory for linear operators”, Grund. math. Wiss., 132, Springer, 1966, 477–513 | MR
[2] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972
[3] H. Baumgärtel, Analytic perturbation theory for matrices and operators, Birkhäuser Verlag, Basel–Boston–Stuttgart, 1985 | MR | Zbl
[4] L. R. Volevich, A. R. Shirikyan, “Remarks on Strongly Hyperbolic Matrices”, Keldysh Institute preprints, 1999, 009
[5] F. Delebecque, “A reduction process for perturbed Markov chains”, SIAM J. Appl. Math., 43:2 (1983), 325–350 | DOI | MR | Zbl
[6] H. O. Kreiss, “Über Matrizen die beshränkte Halbgruppen erzeugen”, Mathematica Scandinavica, 7 (1959), 71–80 | DOI | MR | Zbl
[7] A. H. Levis, “Some computational aspects of the matrix exponential”, IEEE Trans. Automatic Control, 14:4 (1969), 410–411 | DOI | MR
[8] K. Kurdyka, L. Paunescu, “Hyperbolic polynomials and multiparameter real analytic perturbation theory”, Duke Mathematical J., 141:1 (2008), 123–149 | DOI | MR | Zbl
[9] O. N. Kirillov, “Eigenvalue bifurcation in multiparameter families of non-self-adjoint operator matrices”, Zeitschrift für angewandte Mathematik und Physik, 61:2 (2010), 221–234 | DOI | MR | Zbl