Development of a metaheuristic programming
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 4, pp. 415-429.

Voir la notice de l'article provenant de la source Math-Net.Ru

The solution of the problem of building nonlinear models (mathematical expressions, functions, algorithms, programs) based on an experimental data set, a set of variables, a set of basic functions and operations is considered. A metaheuristic programming method for the evolutionary synthesis of nonlinear models has been developed that has a representation of a chromosome in the form of a vector of real numbers and allows the use of various bioinspired (nature-inspired) optimization algorithms in the search for models. The effectiveness of the proposed algorithm is estimated using ten bioinspired algorithms and compared with a standard algorithm of genetic programming, grammatical evolution and Cartesian Genetic Programming. The experiments have shown a significant advantage of this approach as compared with the above algorithms both with respect to time for the solution search (greater than by an order of magnitude in most cases), and the probability of finding a given function (a model) (in many cases at a twofold rate).
@article{SJVM_2020_23_4_a4,
     author = {O. G. Monakhov and E. A. Monakhova},
     title = {Development of a metaheuristic programming},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {415--429},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a4/}
}
TY  - JOUR
AU  - O. G. Monakhov
AU  - E. A. Monakhova
TI  - Development of a metaheuristic programming
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2020
SP  - 415
EP  - 429
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a4/
LA  - ru
ID  - SJVM_2020_23_4_a4
ER  - 
%0 Journal Article
%A O. G. Monakhov
%A E. A. Monakhova
%T Development of a metaheuristic programming
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2020
%P 415-429
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a4/
%G ru
%F SJVM_2020_23_4_a4
O. G. Monakhov; E. A. Monakhova. Development of a metaheuristic programming. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 4, pp. 415-429. http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a4/

[1] H. Kitano, “Artificial intelligence to win the Nobel prize and beyond: creating the engine for scientific discovery”, AI Magazine, 37:1 (2016), 39–49 | DOI

[2] J. R. Koza, Genetic Programming II: Automatic Discovery of Reuseable Programs, MIT Press, 1996

[3] J. R. Koza, “Genetic programming as a means for programming computers by natural selection”, Statistics and Computing, 4 (1994), 87–112 | DOI

[4] W. B. Langdon, R. Poli, Foundations of Genetic Programming, Springer-Verlag, 2002 | Zbl

[5] R. Poli, W. B. Langdon, N. F. McPhee, A Field Guide to Genetic Programming, Lulu.com, San Francisco, California, USA, 2008

[6] V. V. Emel'yanov, V. V. Kureichik, V. M. Kureichik, Teoriya i praktika evolyutsionnogo modelirovaniya, FIZMATLIT, M., 2003

[7] A. P. Karpenko, Sovremennye algoritmy poiskovoi optimizatsii. Algoritmy, vdokhnovlennye prirodoi, Izd-vo MGTU im. N.E. Baumana, M., 2014

[8] O. G. Monakhov, E. A. Monakhova, “O parallel-nom algoritme mnogovariantnogo evolyutsionnogo sinteza nelineinykh modelei”, Tr. 12-i Mezhdunarodnoi Aziatskoi shkoly-seminara “Problemy optimizatsii slozhnykh sistem”, 2016, 390–395

[9] M. O-Neill, C. Ryan, Grammatical Evolution: Evolutionary Automatic Programming in a Arbitrary Language, Kluwer Academic Publishers, 2003 | MR

[10] C. Ryan, J. Collins, M. O. O-Neill, “Grammatical evolution: Evolving programs for an arbitrary language”, Genetic Programming, EuroGP, Lecture Notes in Computer Science, 1391, eds. W. Banzhaf, R. Poli, M. Schoenauer, T.C. Fogarty, Springer, Berlin–Heidelberg, 1998, 83–96 | DOI

[11] J. F. Miller, Cartesian Genetic Programming, Springer, 2011 | Zbl

[12] J. F. Miller, P. Thomson, “Cartesian Genetic Programming”, Proc. of the 3rd European Conference on Genetic Programming, Lecture Notes in Computer Science, 1802, Springer, 2000, 121-132 | DOI

[13] A. I. Diveev, Metod setevogo operatora, VTS RAN, M., 2010 | MR

[14] E. A. Monakhova, O. G. Monakhov, “Poisk rekordnykh tsirkulyantnykh grafov s ispol'zovaniem parallel'nogo geneticheskogo algoritma”, Diskretnyi analiz i issledovanie operatsii, 22:6 (2015), 29–39 | MR

[15] M. Oltean, Multi Expression Programming, Technical Report, Babes-Bolyai Univ., Romania, 2006

[16] O. G. Monakhov, “Metod mnogovariantnogo evolyutsionnogo sinteza modelei na osnove templeitov”, Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana, 2013, no. 3, 269–282

[17] Monakhov O.G., Monakhova E.A., “A parallel algorithm of multi-variant evolutionary synthesis of nonlinear models”, Numerical Analysis and Applications, 10:2 (2017), 140–148 | DOI | MR | Zbl

[18] R. Storn, K. Price, “Differential evolution a simple and efficient heuristic for global optimization over continuous spaces”, J. Global Optimization, 11:4 (1997), 341–359 | DOI | MR | Zbl

[19] Zaheer Hira, Pant Millie, Kumar Sushil, Monakhov Oleg, Monakhova Emilia, “Deep Kusum A new guiding force strategy for differential evolution”, Int. J. of System Assurance Engineering and Management, 8, suppl. 4 (2017), 2170–2183 | DOI

[20] M. R. Bonyadi, Z. Michalewicz, “Particle swarm optimization for single objective continuous space problems: a review”, Evolutionary Computation, 25:1 (2017), 1–54 | DOI

[21] D. Karaboga, B. Akay, “A comparative study of artificial bee colony algorithm”, Applied Mathematics and Computation, 214 (2009), 108–132 | DOI | MR | Zbl

[22] R. V. Rao, V. J. Savsani, D. P. Vakharia, “Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems”, Computer-Aided Design, 43:2 (2011), 303–315 | DOI | MR

[23] M. Crepinsek, S-H Liu, L. Mernik, “A note on teaching-learning-based optimization algorithm”, Information Sciences, 212 (2012), 79–93 | DOI | MR

[24] R. Kommadath, C. Sivadurgaprasad, P. Kotecha, “Single phase multi-group teaching learning algorithm for single objective real-parameter numerical optimization”, IEEE Congress on Evolutionary Computation CEC 2016, 2016, 1165–1172

[25] N. Hansen, A. Ostermeier, “Completely derandomized self-adaptation in evolution strategies”, Evolutionary Computation, 9:2 (2001), 159–195 | DOI | MR

[26] D. Maharana, P. Kotecha, “Simultaneous heat transfer search for computationally expensive numerical optimization”, IEEE Congress on Evolutionary Computation (CEC), 2016, 2982–2988