Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2020_23_4_a4, author = {O. G. Monakhov and E. A. Monakhova}, title = {Development of a metaheuristic programming}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {415--429}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a4/} }
O. G. Monakhov; E. A. Monakhova. Development of a metaheuristic programming. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 4, pp. 415-429. http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a4/
[1] H. Kitano, “Artificial intelligence to win the Nobel prize and beyond: creating the engine for scientific discovery”, AI Magazine, 37:1 (2016), 39–49 | DOI
[2] J. R. Koza, Genetic Programming II: Automatic Discovery of Reuseable Programs, MIT Press, 1996
[3] J. R. Koza, “Genetic programming as a means for programming computers by natural selection”, Statistics and Computing, 4 (1994), 87–112 | DOI
[4] W. B. Langdon, R. Poli, Foundations of Genetic Programming, Springer-Verlag, 2002 | Zbl
[5] R. Poli, W. B. Langdon, N. F. McPhee, A Field Guide to Genetic Programming, Lulu.com, San Francisco, California, USA, 2008
[6] V. V. Emel'yanov, V. V. Kureichik, V. M. Kureichik, Teoriya i praktika evolyutsionnogo modelirovaniya, FIZMATLIT, M., 2003
[7] A. P. Karpenko, Sovremennye algoritmy poiskovoi optimizatsii. Algoritmy, vdokhnovlennye prirodoi, Izd-vo MGTU im. N.E. Baumana, M., 2014
[8] O. G. Monakhov, E. A. Monakhova, “O parallel-nom algoritme mnogovariantnogo evolyutsionnogo sinteza nelineinykh modelei”, Tr. 12-i Mezhdunarodnoi Aziatskoi shkoly-seminara “Problemy optimizatsii slozhnykh sistem”, 2016, 390–395
[9] M. O-Neill, C. Ryan, Grammatical Evolution: Evolutionary Automatic Programming in a Arbitrary Language, Kluwer Academic Publishers, 2003 | MR
[10] C. Ryan, J. Collins, M. O. O-Neill, “Grammatical evolution: Evolving programs for an arbitrary language”, Genetic Programming, EuroGP, Lecture Notes in Computer Science, 1391, eds. W. Banzhaf, R. Poli, M. Schoenauer, T.C. Fogarty, Springer, Berlin–Heidelberg, 1998, 83–96 | DOI
[11] J. F. Miller, Cartesian Genetic Programming, Springer, 2011 | Zbl
[12] J. F. Miller, P. Thomson, “Cartesian Genetic Programming”, Proc. of the 3rd European Conference on Genetic Programming, Lecture Notes in Computer Science, 1802, Springer, 2000, 121-132 | DOI
[13] A. I. Diveev, Metod setevogo operatora, VTS RAN, M., 2010 | MR
[14] E. A. Monakhova, O. G. Monakhov, “Poisk rekordnykh tsirkulyantnykh grafov s ispol'zovaniem parallel'nogo geneticheskogo algoritma”, Diskretnyi analiz i issledovanie operatsii, 22:6 (2015), 29–39 | MR
[15] M. Oltean, Multi Expression Programming, Technical Report, Babes-Bolyai Univ., Romania, 2006
[16] O. G. Monakhov, “Metod mnogovariantnogo evolyutsionnogo sinteza modelei na osnove templeitov”, Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana, 2013, no. 3, 269–282
[17] Monakhov O.G., Monakhova E.A., “A parallel algorithm of multi-variant evolutionary synthesis of nonlinear models”, Numerical Analysis and Applications, 10:2 (2017), 140–148 | DOI | MR | Zbl
[18] R. Storn, K. Price, “Differential evolution a simple and efficient heuristic for global optimization over continuous spaces”, J. Global Optimization, 11:4 (1997), 341–359 | DOI | MR | Zbl
[19] Zaheer Hira, Pant Millie, Kumar Sushil, Monakhov Oleg, Monakhova Emilia, “Deep Kusum A new guiding force strategy for differential evolution”, Int. J. of System Assurance Engineering and Management, 8, suppl. 4 (2017), 2170–2183 | DOI
[20] M. R. Bonyadi, Z. Michalewicz, “Particle swarm optimization for single objective continuous space problems: a review”, Evolutionary Computation, 25:1 (2017), 1–54 | DOI
[21] D. Karaboga, B. Akay, “A comparative study of artificial bee colony algorithm”, Applied Mathematics and Computation, 214 (2009), 108–132 | DOI | MR | Zbl
[22] R. V. Rao, V. J. Savsani, D. P. Vakharia, “Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems”, Computer-Aided Design, 43:2 (2011), 303–315 | DOI | MR
[23] M. Crepinsek, S-H Liu, L. Mernik, “A note on teaching-learning-based optimization algorithm”, Information Sciences, 212 (2012), 79–93 | DOI | MR
[24] R. Kommadath, C. Sivadurgaprasad, P. Kotecha, “Single phase multi-group teaching learning algorithm for single objective real-parameter numerical optimization”, IEEE Congress on Evolutionary Computation CEC 2016, 2016, 1165–1172
[25] N. Hansen, A. Ostermeier, “Completely derandomized self-adaptation in evolution strategies”, Evolutionary Computation, 9:2 (2001), 159–195 | DOI | MR
[26] D. Maharana, P. Kotecha, “Simultaneous heat transfer search for computationally expensive numerical optimization”, IEEE Congress on Evolutionary Computation (CEC), 2016, 2982–2988