Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2020_23_4_a3, author = {O. I. Krivorotko and S. I. Kabanikhin and N. Yu. Zyatkov and A. Yu. Prikhodko and N. M. Prokhoshin and M. A. Shishlenin}, title = {Mathematical modeling and forecasting of {COVID-19} in}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {395--414}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a3/} }
TY - JOUR AU - O. I. Krivorotko AU - S. I. Kabanikhin AU - N. Yu. Zyatkov AU - A. Yu. Prikhodko AU - N. M. Prokhoshin AU - M. A. Shishlenin TI - Mathematical modeling and forecasting of COVID-19 in JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2020 SP - 395 EP - 414 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a3/ LA - ru ID - SJVM_2020_23_4_a3 ER -
%0 Journal Article %A O. I. Krivorotko %A S. I. Kabanikhin %A N. Yu. Zyatkov %A A. Yu. Prikhodko %A N. M. Prokhoshin %A M. A. Shishlenin %T Mathematical modeling and forecasting of COVID-19 in %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2020 %P 395-414 %V 23 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a3/ %G ru %F SJVM_2020_23_4_a3
O. I. Krivorotko; S. I. Kabanikhin; N. Yu. Zyatkov; A. Yu. Prikhodko; N. M. Prokhoshin; M. A. Shishlenin. Mathematical modeling and forecasting of COVID-19 in. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 4, pp. 395-414. http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a3/
[1] Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University, , March 21, 2020 https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
[2] M. V. Tamm, “Koronavirusnaya infektsiya v Moskve: prognozy i stsenarii”, FARMAKOEKONOMIKA. Sovremennaya Farmakoekonomika i Farmakoepidemiologiya, 13:1 (2020), 43–51 | DOI
[3] E. M. Koltsova, E. S. Kurkina, A. M. Vasetsky, Mathematical modeling of the spread of COVID-19 in Moscow and Russian regions, , 2020 2004.10118 [q-bio.PE]
[4] A. Zlojutro, D. Rey, L. Gardner, “Optimizing border control policies for global out-break mitigation”, Scientific Reports, 9 (2019), 2216 https://rdcu.be/bniOs | DOI
[5] Y. Chen, J. Cheng, Y. Jiang, K. Liu, “A time delay dynamical model for outbreak of 2019-nCoV and the parameter identification”, J. of Inverse and Ill-posed Problems, 28:2 (2020), 243–250 | DOI | MR | Zbl
[6] B. Tang, X. Wang, Q. Li, N. L. Bragazzi, S. Tang, Y. Xiao, J. Wu, Estimation of the transmission risk of 2019-nCoV and its implication for public health interventions, SSRN, https://ssrn.com/abstract=3525558
[7] Shi Pengpeng, Cao Shengli, Feng Peihua SEIR Transmission dynamics model of 2019 nCoV coronavirus with considering the weak infectious ability and changes in latency duration, medRxiv, 2020 | DOI
[8] Kiesha Prem, Yang Liu, Timothy W Russell, Adam J Kucharski, Rosalind M Eggo, Nicholas Davies, Mark Jit, Petra Klepac, “The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study”, The Lancet Public Health, 5:5 (2020), E261–E270 | DOI
[9] Fan Ru-guo, Wang Yi-bo, Luo Ming, Zhang Ying-qing, Zhu Chao-ping, “SEIR-Based COVID-19 Transmission Model and Inflection Point Prediction Analysis”, J. of University of Electronic Science and Technology of China, 49:3 (2020), 369–374
[10] S. I. Kabanikhin, O. I. Krivorot'ko, “Matematicheskoe modelirovanie epidemii Uhan'skogo koronavirusa COVID-2019 i obratnye zadachi”, Zhurn. vychisl. matematiki i mat. fiziki, 2020, no. 11
[11] Ying Liu, Albert A Gayle, Annelies Wilder-Smith, Joacim Rocklöv, “The reproductive number of COVID-19 is higher compared to SARS coronavirus”, J. of Travel Medicine, 27:2 (2020), taaa021 | DOI
[12] Liu Xiuli, J. D. Hewings Geoffrey, Wang Shouyang, Qin Minghui, Xiang Xin, Zheng Shan, Li Xuefeng, Modelling the situation of COVID-19 and effects of different containment strategies in China with dynamic differential equations and parameters estimation, medRxiv, 2020 | DOI
[13] Lijun Pei, “Prediction of numbers of the accumulative confirmed patients (NACP) and the plateau phase of 2019-nCoV in China”, Cognitive Neurodynamics, 14 (2020), 411–424 | DOI
[14] C. Anastassopoulou, L. Russo, A. Tsakris, C. I. Siettos, “Data-based analysis, modelling and forecasting of the novel Coronavirus (2019-nCoV) outbreak”, Plos One, 2020 | DOI | MR
[15] Z. Yang, Z. Zeng, K. Wang, S. S. Wong, W. Liang, M. Zanin, P. Liu, X. Cao, Z. Gao, Z. Mai, J. Liang, X. Liu, S. Li, Y. Li, F. Ye, W. Guan, Y. Yang, F. Li, S. Luo, Y. Xie, B. Liu, Z. Wang, S. Zhang, Y. Wang, N. Zhong, J. He, “Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions”, J. Thorac Dis., 12:3 (2020), 165–174 | DOI | MR
[16] B. Ivorra, M. R. Ferrández, M. Vela-Pérez, A. M. Ramos, “Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into account the undetected infections. The case of China”, Commun Nonlinear Sci Numer Simul., 88 (2020), 105303 (published online ahead of print, 2020 Apr 30) | DOI | MR | Zbl
[17] A. Godio, F. Pace, A. Vergnano, “SEIR modeling of the Italian epidemic of SARS-CoV-2 using computational swarm intelligence”, International Journal of Environmental Research and Public Health, 17 (2020), 3535 | DOI
[18] J. M. Carcione, J. E. Santos, C. Bagaini, J. Ba, “A Simulation of a COVID-19 Epidemic Based on a Deterministic SEIR Model”, Front. Public Health, 8 (2020), 230 | DOI
[19] Y. Ding, L. Gao, “An evaluation of COVID-19 in Italy: A data-driven modeling analysis”, Infectious Disease Modelling, 5 (2020), 495–501 | DOI
[20] Askery Canabarro, Elayne Tenorio, Renato Martins, Lais Martins, Samurai Brito, Rafael Chaves Data-driven study of the COVID-19 pandemic via age-structured modelling and prediction of the health system Failure in Brazil amid diverse intervention strategies, medRxiv, 2020 | DOI
[21] Taarak Rapolu, Brahmani Nutakki, T. Sobha Rani, S. Durga Bhavani, A time-dependent SEIRD model for forecasting the COVID-19 transmission dynamics, medRxiv, 2020 | DOI
[22] P. Klepac, L. W. Pomeroy, O. N. Bjørnstad, T. Kuiken, A. D.M. E. Osterhaus, J. M. Rijks, “Stage-structured transmission of phocine distemper virus in the Dutch 2002 outbreak”, Proc Biol Sci, 276 (2009), 2469–2476
[23] P. Klepac, H. Caswell, “The stage-structured epidemic: linking disease and demography with a multi-state matrix approach model”, Theor. Ecol., 4 (2011), 301–319 | DOI
[24] C. I. Siettos, L. Russo, “Mathematical modeling of infectious disease dynamics”, Virulence, 4:4 (2013), 295–306 | DOI
[25] Samuel M. Jenness, M. Steven, “Goodreau Martina Morris EpiModel: An R package for mathematical modeling of infectious disease over networks”, J. of Statistical Software, 84:8 (2018) | DOI
[26] N. B. Noll, I. Aksamentov, V. Druelle, A. Badenhorst, B. Ronzani, G. Jefferies, J. Albert, R. Neher, COVID-19 Scenarios: an interactive tool to explore the spread and associated morbidity and mortality of SARS-CoV-2, medRxiv, 2020 | DOI
[27] Statistics and forecast at the regional level https://covid19.biouml.org/COVID-19
[28] Projections Using Machine Learning https://covid19-projections.com/COVID-19
[29] Coronavirus disease 2019 (COVID-19), Situation report, , May 31, 2020 https://covid19.who.int/
[30] E. Unlu, H. Leger, O. Motornyi, A. Rukubayihunga, T. Ishacian, M. Chouiten, Epidemic analysis of COVID-19 outbreak and counter-measures in France, medRxiv, 2020 | DOI
[31] R. Sameni, Mathematical modeling of epidemic diseases; A case study of the COVID-19 coronavirus, 2020, arXiv: 2003.11371 | Zbl
[32] S. I. Kabanikhin, M. A. Shishlenin, “Quasi-solution in inverse coefficient problems”, J. of Inverse and Ill-posed Problems, 16:7 (2008), 707–715 | DOI | MR
[33] G. Bellu, M. P. Saccomani, S. Audoly, L. D'Angi'o, “DAISY: A new software tool to test global identifiability of biological and physiological systems”, Computer Methods and Programs in Biomedicine, 88:1 (2007), 52–61 | DOI
[34] A. Raue, V. Becker, U. Klingm-uller, J. Timmer, “Identifiability and observability analysis for experimental design in nonlinear dynamical models”, Chaos, 20 (2010), 045105 | DOI | Zbl
[35] O. I. Krivorot'ko, D. V. Andornaya, S. I. Kabanikhin, “Analiz chuvstvitel'nosti i prakticheskaya identifitsiruemost' matematicheskih modelei biologii”, Sibirskii zhurnal industrial'noi matematiki, 23:1 (2020), 107–125 | MR
[36] A. Raue, J. Karlsson, M. P. Saccomani, M. Jirstrand, J. Timmer, “Comparison of approaches for parameter identifiability analysis of biological systems”, Bioinformatics, 30:10 (2014), 1440–1448 | DOI