Mathematical modeling and forecasting of COVID-19 in
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 4, pp. 395-414.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the inverse problems of finding unknown parameters of the SEIR-HCD and SEIR-D mathematical models of the spread of COVID-19 coronavirus infection based on additional information about the number of detected cases, mortality, self-isolation coefficient and tests performed for the city of Moscow and the Novosibirsk region since 23.03.2020. In the SEIR-HCD model, the population is divided into seven, and in SEIR-D - into five groups with similar characteristics and with transition probabilities depending on a specific region. An analysis of the identifiability of the SEIR-HCD mathematical model was made, which revealed the least sensitive unknown parameters as related to additional information. The task of determining parameters is reduced to the minimization of objective functionals, which are solved by stochastic methods (simulated annealing, differential evolution, genetic algorithm). Prognostic scenarios for the disease development in Moscow and in the Novosibirsk region were developed and the applicability of the developed models was analyzed.
@article{SJVM_2020_23_4_a3,
     author = {O. I. Krivorotko and S. I. Kabanikhin and N. Yu. Zyatkov and A. Yu. Prikhodko and N. M. Prokhoshin and M. A. Shishlenin},
     title = {Mathematical modeling and forecasting of {COVID-19} in},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {395--414},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a3/}
}
TY  - JOUR
AU  - O. I. Krivorotko
AU  - S. I. Kabanikhin
AU  - N. Yu. Zyatkov
AU  - A. Yu. Prikhodko
AU  - N. M. Prokhoshin
AU  - M. A. Shishlenin
TI  - Mathematical modeling and forecasting of COVID-19 in
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2020
SP  - 395
EP  - 414
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a3/
LA  - ru
ID  - SJVM_2020_23_4_a3
ER  - 
%0 Journal Article
%A O. I. Krivorotko
%A S. I. Kabanikhin
%A N. Yu. Zyatkov
%A A. Yu. Prikhodko
%A N. M. Prokhoshin
%A M. A. Shishlenin
%T Mathematical modeling and forecasting of COVID-19 in
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2020
%P 395-414
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a3/
%G ru
%F SJVM_2020_23_4_a3
O. I. Krivorotko; S. I. Kabanikhin; N. Yu. Zyatkov; A. Yu. Prikhodko; N. M. Prokhoshin; M. A. Shishlenin. Mathematical modeling and forecasting of COVID-19 in. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 4, pp. 395-414. http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a3/

[1] Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University, , March 21, 2020 https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

[2] M. V. Tamm, “Koronavirusnaya infektsiya v Moskve: prognozy i stsenarii”, FARMAKOEKONOMIKA. Sovremennaya Farmakoekonomika i Farmakoepidemiologiya, 13:1 (2020), 43–51 | DOI

[3] E. M. Koltsova, E. S. Kurkina, A. M. Vasetsky, Mathematical modeling of the spread of COVID-19 in Moscow and Russian regions, , 2020 2004.10118 [q-bio.PE]

[4] A. Zlojutro, D. Rey, L. Gardner, “Optimizing border control policies for global out-break mitigation”, Scientific Reports, 9 (2019), 2216 https://rdcu.be/bniOs | DOI

[5] Y. Chen, J. Cheng, Y. Jiang, K. Liu, “A time delay dynamical model for outbreak of 2019-nCoV and the parameter identification”, J. of Inverse and Ill-posed Problems, 28:2 (2020), 243–250 | DOI | MR | Zbl

[6] B. Tang, X. Wang, Q. Li, N. L. Bragazzi, S. Tang, Y. Xiao, J. Wu, Estimation of the transmission risk of 2019-nCoV and its implication for public health interventions, SSRN, https://ssrn.com/abstract=3525558

[7] Shi Pengpeng, Cao Shengli, Feng Peihua SEIR Transmission dynamics model of 2019 nCoV coronavirus with considering the weak infectious ability and changes in latency duration, medRxiv, 2020 | DOI

[8] Kiesha Prem, Yang Liu, Timothy W Russell, Adam J Kucharski, Rosalind M Eggo, Nicholas Davies, Mark Jit, Petra Klepac, “The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study”, The Lancet Public Health, 5:5 (2020), E261–E270 | DOI

[9] Fan Ru-guo, Wang Yi-bo, Luo Ming, Zhang Ying-qing, Zhu Chao-ping, “SEIR-Based COVID-19 Transmission Model and Inflection Point Prediction Analysis”, J. of University of Electronic Science and Technology of China, 49:3 (2020), 369–374

[10] S. I. Kabanikhin, O. I. Krivorot'ko, “Matematicheskoe modelirovanie epidemii Uhan'skogo koronavirusa COVID-2019 i obratnye zadachi”, Zhurn. vychisl. matematiki i mat. fiziki, 2020, no. 11

[11] Ying Liu, Albert A Gayle, Annelies Wilder-Smith, Joacim Rocklöv, “The reproductive number of COVID-19 is higher compared to SARS coronavirus”, J. of Travel Medicine, 27:2 (2020), taaa021 | DOI

[12] Liu Xiuli, J. D. Hewings Geoffrey, Wang Shouyang, Qin Minghui, Xiang Xin, Zheng Shan, Li Xuefeng, Modelling the situation of COVID-19 and effects of different containment strategies in China with dynamic differential equations and parameters estimation, medRxiv, 2020 | DOI

[13] Lijun Pei, “Prediction of numbers of the accumulative confirmed patients (NACP) and the plateau phase of 2019-nCoV in China”, Cognitive Neurodynamics, 14 (2020), 411–424 | DOI

[14] C. Anastassopoulou, L. Russo, A. Tsakris, C. I. Siettos, “Data-based analysis, modelling and forecasting of the novel Coronavirus (2019-nCoV) outbreak”, Plos One, 2020 | DOI | MR

[15] Z. Yang, Z. Zeng, K. Wang, S. S. Wong, W. Liang, M. Zanin, P. Liu, X. Cao, Z. Gao, Z. Mai, J. Liang, X. Liu, S. Li, Y. Li, F. Ye, W. Guan, Y. Yang, F. Li, S. Luo, Y. Xie, B. Liu, Z. Wang, S. Zhang, Y. Wang, N. Zhong, J. He, “Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions”, J. Thorac Dis., 12:3 (2020), 165–174 | DOI | MR

[16] B. Ivorra, M. R. Ferrández, M. Vela-Pérez, A. M. Ramos, “Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into account the undetected infections. The case of China”, Commun Nonlinear Sci Numer Simul., 88 (2020), 105303 (published online ahead of print, 2020 Apr 30) | DOI | MR | Zbl

[17] A. Godio, F. Pace, A. Vergnano, “SEIR modeling of the Italian epidemic of SARS-CoV-2 using computational swarm intelligence”, International Journal of Environmental Research and Public Health, 17 (2020), 3535 | DOI

[18] J. M. Carcione, J. E. Santos, C. Bagaini, J. Ba, “A Simulation of a COVID-19 Epidemic Based on a Deterministic SEIR Model”, Front. Public Health, 8 (2020), 230 | DOI

[19] Y. Ding, L. Gao, “An evaluation of COVID-19 in Italy: A data-driven modeling analysis”, Infectious Disease Modelling, 5 (2020), 495–501 | DOI

[20] Askery Canabarro, Elayne Tenorio, Renato Martins, Lais Martins, Samurai Brito, Rafael Chaves Data-driven study of the COVID-19 pandemic via age-structured modelling and prediction of the health system Failure in Brazil amid diverse intervention strategies, medRxiv, 2020 | DOI

[21] Taarak Rapolu, Brahmani Nutakki, T. Sobha Rani, S. Durga Bhavani, A time-dependent SEIRD model for forecasting the COVID-19 transmission dynamics, medRxiv, 2020 | DOI

[22] P. Klepac, L. W. Pomeroy, O. N. Bjørnstad, T. Kuiken, A. D.M. E. Osterhaus, J. M. Rijks, “Stage-structured transmission of phocine distemper virus in the Dutch 2002 outbreak”, Proc Biol Sci, 276 (2009), 2469–2476

[23] P. Klepac, H. Caswell, “The stage-structured epidemic: linking disease and demography with a multi-state matrix approach model”, Theor. Ecol., 4 (2011), 301–319 | DOI

[24] C. I. Siettos, L. Russo, “Mathematical modeling of infectious disease dynamics”, Virulence, 4:4 (2013), 295–306 | DOI

[25] Samuel M. Jenness, M. Steven, “Goodreau Martina Morris EpiModel: An R package for mathematical modeling of infectious disease over networks”, J. of Statistical Software, 84:8 (2018) | DOI

[26] N. B. Noll, I. Aksamentov, V. Druelle, A. Badenhorst, B. Ronzani, G. Jefferies, J. Albert, R. Neher, COVID-19 Scenarios: an interactive tool to explore the spread and associated morbidity and mortality of SARS-CoV-2, medRxiv, 2020 | DOI

[27] Statistics and forecast at the regional level https://covid19.biouml.org/COVID-19

[28] Projections Using Machine Learning https://covid19-projections.com/COVID-19

[29] Coronavirus disease 2019 (COVID-19), Situation report, , May 31, 2020 https://covid19.who.int/

[30] E. Unlu, H. Leger, O. Motornyi, A. Rukubayihunga, T. Ishacian, M. Chouiten, Epidemic analysis of COVID-19 outbreak and counter-measures in France, medRxiv, 2020 | DOI

[31] R. Sameni, Mathematical modeling of epidemic diseases; A case study of the COVID-19 coronavirus, 2020, arXiv: 2003.11371 | Zbl

[32] S. I. Kabanikhin, M. A. Shishlenin, “Quasi-solution in inverse coefficient problems”, J. of Inverse and Ill-posed Problems, 16:7 (2008), 707–715 | DOI | MR

[33] G. Bellu, M. P. Saccomani, S. Audoly, L. D'Angi'o, “DAISY: A new software tool to test global identifiability of biological and physiological systems”, Computer Methods and Programs in Biomedicine, 88:1 (2007), 52–61 | DOI

[34] A. Raue, V. Becker, U. Klingm-uller, J. Timmer, “Identifiability and observability analysis for experimental design in nonlinear dynamical models”, Chaos, 20 (2010), 045105 | DOI | Zbl

[35] O. I. Krivorot'ko, D. V. Andornaya, S. I. Kabanikhin, “Analiz chuvstvitel'nosti i prakticheskaya identifitsiruemost' matematicheskih modelei biologii”, Sibirskii zhurnal industrial'noi matematiki, 23:1 (2020), 107–125 | MR

[36] A. Raue, J. Karlsson, M. P. Saccomani, M. Jirstrand, J. Timmer, “Comparison of approaches for parameter identifiability analysis of biological systems”, Bioinformatics, 30:10 (2014), 1440–1448 | DOI