An efficient algorithm for stochastic ensemble smoothing
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 4, pp. 381-394.

Voir la notice de l'article provenant de la source Math-Net.Ru

The state of the environment using a mathematical model and observational data using a data assimilation procedure is assessed. The Kalman ensemble filter is one of the widespread data assimilation algorithms at present. An important component of the data assimilation procedure is the assessment not only of the predicted values, but also of the parameters that are not described by the model. A single improvement procedure from observational data in the Kalman ensemble filter may not provide a required accuracy. In this regard, the ensemble smoothing algorithm, in which data from a certain time interval are used to estimate values at a given time, is becoming increasingly popular. This paper considers a generalization of the previously proposed algorithm, which is a version of the Kalman stochastic ensemble filter. The generalized algorithm is an ensemble smoothing algorithm, in which smoothing is performed for the average value of a sample and then the ensemble of perturbations is transformed. The transformation matrix proposed in the paper is used to estimate both the predicted value and the parameter. An important advantage of the algorithm is its locality, which makes it possible to estimate a parameter in a given domain. The paper provides a rationale for the applicability of this algorithm to the implementation of ensemble smoothing. Test calculations were performed with the proposed numerical algorithm with a 1-dimensional model of transport and diffusion of passive impurity. The algorithm proposed is effective and can be used to assess the state of the environment.
@article{SJVM_2020_23_4_a2,
     author = {E. G. Klimova},
     title = {An efficient algorithm for stochastic ensemble smoothing},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {381--394},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a2/}
}
TY  - JOUR
AU  - E. G. Klimova
TI  - An efficient algorithm for stochastic ensemble smoothing
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2020
SP  - 381
EP  - 394
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a2/
LA  - ru
ID  - SJVM_2020_23_4_a2
ER  - 
%0 Journal Article
%A E. G. Klimova
%T An efficient algorithm for stochastic ensemble smoothing
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2020
%P 381-394
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a2/
%G ru
%F SJVM_2020_23_4_a2
E. G. Klimova. An efficient algorithm for stochastic ensemble smoothing. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 4, pp. 381-394. http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a2/

[1] Klimova E.G., “The Kalman stochastic ensemble filter with transformation of perturbation ensemble”, Numerical Analysis and Applications, 12:1 (2019), 26–36 | DOI | MR

[2] A.A. Krasovskii (red.), Spravochnik po teorii avtomaticheskogo upravleniya, Nauka, M., 1987

[3] A. Carrassi, M. Bocquet, L. Bertino, G. Evensen, “Data assimilation in the geosciences: An overview of methods, issuers and perspectives”, Wiley interdisciplinary reviews: Climate Change, 9:5 (2018), e535 | DOI

[4] G. Evensen, Data Assimilation. The Ensemble Kalman Filter, Springer-Verlag, Heideberg–Berlin, 2009 | MR

[5] G. Evensen, P. J. van Leeuwen, “An ensemble Kalman smoother for nonlinear dynamics”, Monthly Weather Review, 128 (2000), 1852–1867 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[6] L. Feng, P. I. Palmer et al., “Consistent regional fluxes of CH4 and CO2 inferred from GOSAT proxy XCH4:XCO2 retrievals, 2010-2014”, Atmospheric chemistry and physics, 17:7 (2017), 4781–4797 | DOI

[7] M. Fisher, M. Leutbecher, G. A. Kelly, “On the equivalence between Kalman smoothing and weak-constraint four-dimensional variational data assimilation”, Quarterly J. of the Royal Meteorological Society, 131 (2005), 3235–3246 | DOI

[8] H. L. Houtekamer, F. Zhang, “Review of the ensemble Kalman filter for atmospheric data assimilation”, Monthly Weather Review, 144:12 (2016), 4489–4532 | DOI

[9] B. R. Hunt, E. J. Kostelich, I. Szunyogh, “Efficient data assimilation for statiotemporal chaos: A local ensemble transform Kalman filter”, Physica D, 230 (2007), 112–126 | DOI | MR | Zbl

[10] A. H. Jazwinski, Stochastic Processes and Filtering Theory, Academic Press, New York, 1970 | Zbl

[11] E. Klimova, “A suboptimal data assimilation algorithm based on the ensemble Kalman filter”, Quarterly J. of the Royal Meteorological Society, 138:669 (2012), 2079–2085 | DOI

[12] J. Lei, P. Bickel, C. Shyder, “Comparison of ensemble Kalman filters under non-gaussianity”, Monthly Weather Review, 138 (2010), 1293–1306 | DOI

[13] A. Tsuruta, T. Aalto et al, “Global methane emission estimation for 2010-2012 from Carbon tracker Europe-CH4 v1.0”, Geoscientific model development, 10:3 (2017), 1261–1287 | DOI