Construction of reachable sets of controlled systems with second order of
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 4, pp. 365-380
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper investigates the pixel method for constructing reachable sets of a dynamic controlled system. Sufficient conditions for a control system have been obtained under which the explicit second order Runge–Kutta method (a modified Euler method) provides the second order of accuracy with respect to a time step in constructing reachable sets, even if discontinuous functions are in the class of admissible controls.
@article{SJVM_2020_23_4_a1,
author = {A. A. Ershov},
title = {Construction of reachable sets of controlled systems with second order of},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {365--380},
publisher = {mathdoc},
volume = {23},
number = {4},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a1/}
}
TY - JOUR AU - A. A. Ershov TI - Construction of reachable sets of controlled systems with second order of JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2020 SP - 365 EP - 380 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a1/ LA - ru ID - SJVM_2020_23_4_a1 ER -
A. A. Ershov. Construction of reachable sets of controlled systems with second order of. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 4, pp. 365-380. http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a1/