Construction of reachable sets of controlled systems with second order of
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 4, pp. 365-380.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper investigates the pixel method for constructing reachable sets of a dynamic controlled system. Sufficient conditions for a control system have been obtained under which the explicit second order Runge–Kutta method (a modified Euler method) provides the second order of accuracy with respect to a time step in constructing reachable sets, even if discontinuous functions are in the class of admissible controls.
@article{SJVM_2020_23_4_a1,
     author = {A. A. Ershov},
     title = {Construction of reachable sets of controlled systems with second order of},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {365--380},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a1/}
}
TY  - JOUR
AU  - A. A. Ershov
TI  - Construction of reachable sets of controlled systems with second order of
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2020
SP  - 365
EP  - 380
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a1/
LA  - ru
ID  - SJVM_2020_23_4_a1
ER  - 
%0 Journal Article
%A A. A. Ershov
%T Construction of reachable sets of controlled systems with second order of
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2020
%P 365-380
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a1/
%G ru
%F SJVM_2020_23_4_a1
A. A. Ershov. Construction of reachable sets of controlled systems with second order of. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 4, pp. 365-380. http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a1/

[1] S. P. Sethi, Optimal Control Theory: Applications to Management Science and Economics, 2nd edition, ed. G.L. Thompson, Springer, 2005 | MR

[2] E. A. Fil'kenshtein, A. Yu. Gornov, “Algoritm kvaziravnomernogo zapolneniya mnozhestva dostizhimosti nelineinoi upravlyaemoi sistemy”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Ser. Matematika, 19 (2017), 217–223 | MR

[3] A. Yu. Gornov, E. A. Finkel'shtein, “Algorithm for piecewise-linear approximation of the reachable set boundary”, Automation and Remote Control, 76:3 (2015), 385–393 | DOI | MR | Zbl

[4] R. Ferretti, “High-order approximations of linear control systems via Runge-Kutta schemes”, Computing, 58:4 (1997), 351–364 | DOI | MR | Zbl

[5] V. M. Veliov, “Second order discrete approximation to linear differential inclusions”, SIAM J. of Numerical Analysis, 29:2 (1992), 439–451 | DOI | MR | Zbl

[6] D. H. Guang, L. Mingzhu, “Input-to-state stability of Runge-Kutta methods for nonlinear control systems”, J. of Computation and Applied Mathematics, 205:1 (2007), 633–639 | DOI | MR | Zbl

[7] R. Baier, “Selection strategies for set-valued Runge-Kutta methods”, Proc. of the Numerical Analysis and its Applications, NAA 2004, Lecture Notes in Computer Science, 3401, 2005, 149-157 | DOI | Zbl

[8] A. O. Novikova, “Postroenie mnozhestv dostizhimosti dvumernyh nelineinyh upravlyaemyh sistem piksel'nym metodom”, Tr. Prikladnaya matematika i informatika, 2015, no. 50, 62–82

[9] A. O. Novikova, “Computation and visualization of control systems reachable sets with parallel processing on graphics processing units”, 13th Viennese Workshop on Optimal Control and Dynamic Games: Operations Research and Control Systems, TU Wien, 2015, 57–58

[10] V. A. Zorich, Matematicheskii analiz, v. I, Izd-e 6-e, dopoln., MTSNMO, M., 2012