Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2020_23_4_a1, author = {A. A. Ershov}, title = {Construction of reachable sets of controlled systems with second order of}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {365--380}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a1/} }
TY - JOUR AU - A. A. Ershov TI - Construction of reachable sets of controlled systems with second order of JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2020 SP - 365 EP - 380 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a1/ LA - ru ID - SJVM_2020_23_4_a1 ER -
A. A. Ershov. Construction of reachable sets of controlled systems with second order of. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 4, pp. 365-380. http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a1/
[1] S. P. Sethi, Optimal Control Theory: Applications to Management Science and Economics, 2nd edition, ed. G.L. Thompson, Springer, 2005 | MR
[2] E. A. Fil'kenshtein, A. Yu. Gornov, “Algoritm kvaziravnomernogo zapolneniya mnozhestva dostizhimosti nelineinoi upravlyaemoi sistemy”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Ser. Matematika, 19 (2017), 217–223 | MR
[3] A. Yu. Gornov, E. A. Finkel'shtein, “Algorithm for piecewise-linear approximation of the reachable set boundary”, Automation and Remote Control, 76:3 (2015), 385–393 | DOI | MR | Zbl
[4] R. Ferretti, “High-order approximations of linear control systems via Runge-Kutta schemes”, Computing, 58:4 (1997), 351–364 | DOI | MR | Zbl
[5] V. M. Veliov, “Second order discrete approximation to linear differential inclusions”, SIAM J. of Numerical Analysis, 29:2 (1992), 439–451 | DOI | MR | Zbl
[6] D. H. Guang, L. Mingzhu, “Input-to-state stability of Runge-Kutta methods for nonlinear control systems”, J. of Computation and Applied Mathematics, 205:1 (2007), 633–639 | DOI | MR | Zbl
[7] R. Baier, “Selection strategies for set-valued Runge-Kutta methods”, Proc. of the Numerical Analysis and its Applications, NAA 2004, Lecture Notes in Computer Science, 3401, 2005, 149-157 | DOI | Zbl
[8] A. O. Novikova, “Postroenie mnozhestv dostizhimosti dvumernyh nelineinyh upravlyaemyh sistem piksel'nym metodom”, Tr. Prikladnaya matematika i informatika, 2015, no. 50, 62–82
[9] A. O. Novikova, “Computation and visualization of control systems reachable sets with parallel processing on graphics processing units”, 13th Viennese Workshop on Optimal Control and Dynamic Games: Operations Research and Control Systems, TU Wien, 2015, 57–58
[10] V. A. Zorich, Matematicheskii analiz, v. I, Izd-e 6-e, dopoln., MTSNMO, M., 2012