Construction of reachable sets of controlled systems with second order of
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 4, pp. 365-380

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper investigates the pixel method for constructing reachable sets of a dynamic controlled system. Sufficient conditions for a control system have been obtained under which the explicit second order Runge–Kutta method (a modified Euler method) provides the second order of accuracy with respect to a time step in constructing reachable sets, even if discontinuous functions are in the class of admissible controls.
@article{SJVM_2020_23_4_a1,
     author = {A. A. Ershov},
     title = {Construction of reachable sets of controlled systems with second order of},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {365--380},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a1/}
}
TY  - JOUR
AU  - A. A. Ershov
TI  - Construction of reachable sets of controlled systems with second order of
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2020
SP  - 365
EP  - 380
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a1/
LA  - ru
ID  - SJVM_2020_23_4_a1
ER  - 
%0 Journal Article
%A A. A. Ershov
%T Construction of reachable sets of controlled systems with second order of
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2020
%P 365-380
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a1/
%G ru
%F SJVM_2020_23_4_a1
A. A. Ershov. Construction of reachable sets of controlled systems with second order of. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 4, pp. 365-380. http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a1/