On the simultaneous restoration of the density and
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 3, pp. 289-308.

Voir la notice de l'article provenant de la source Math-Net.Ru

Analytical and numerical methods for solving inverse problems of logarithmic and the Newtonian potentials are investigated. The following contact problem in the case of a Newtonian potential is considered. In the domain $\Omega\{\Omega: -l\leqslant x,y\leqslant l, H-\varphi(x,y)\leqslant z\leqslant H\}$, sources with the density $\rho(x,y)$, perturbing the Earth's gravitational field, are distributed. Here, $\varphi(x, y)$ is a non-negative finite function with the support $\Omega=[-l,l]^2$, $0\leqslant\varphi(x,y)\leqslant H$. It is required to simultaneously restore the depth $H$ of the occurrence of the contact surface $z=H$, the density $\rho(x,y)$ of sources, and the function $\varphi(x,y)$. The methods of simultaneous determination are based on the use of nonlinear models of potential theory which are developed in the paper. The following kinds of information are used as the basic ones: 1) values of the gravity field and its first and second derivatives; 2) values of the gravity field at the different heights. The possibility of the simultaneous recovery of the functions $\rho(x,y)$, $\varphi(x,y)$ and the constants $H$ in the analytical form is demonstrated. Iterative methods for their simultaneous recovery. The model examples demonstrate the effectiveness of the proposed numerical methods are constructed.
@article{SJVM_2020_23_3_a3,
     author = {I. V. Boykov and V. A. Ryazantsev},
     title = {On the simultaneous restoration of the density and},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {289--308},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a3/}
}
TY  - JOUR
AU  - I. V. Boykov
AU  - V. A. Ryazantsev
TI  - On the simultaneous restoration of the density and
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2020
SP  - 289
EP  - 308
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a3/
LA  - ru
ID  - SJVM_2020_23_3_a3
ER  - 
%0 Journal Article
%A I. V. Boykov
%A V. A. Ryazantsev
%T On the simultaneous restoration of the density and
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2020
%P 289-308
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a3/
%G ru
%F SJVM_2020_23_3_a3
I. V. Boykov; V. A. Ryazantsev. On the simultaneous restoration of the density and. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 3, pp. 289-308. http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a3/

[1] L. N. Sretenskii, Teoriya n'yutonovskogo potentsiala, Gostekhizdat, M., 1946

[2] Tikhonov A.N., Glasko V.B., “Use of the regularization method in non-linear problems”, USSR Computational Mathematics and Mathematical Physics, 5:3 (1965), 93–107 | DOI

[3] Mikhailov V.O., Diament M., “Some aspects of interpretation of tensor gradientometry data”, Izvestiya. Physics of the Solid Earth, 42:12 (2006), 971–978 | DOI

[4] V. M. Novoselitskii, P. S. Martyshko, S. G. Bychkov, G. P. Scherbinina, G. V. Prostolupov, “Matematicheskie i geologicheskie problemy v sisteme “VECTOR””, Materialy vtoroi Vserossiiskoi konferentsii “Geofizika i matematika”, GI UrO RAN, Perm, 2001, 240–247

[5] Prostolupov G.V., Novoselitskiy V.M., Koneshov V.N., Shcherbinina G.P., “Gravity and magnetic field interpretation based on transformations of horizontal gradients in the VECTOR system”, Izvestiya. Physics of the Solid Earth, 42:6 (2006), 530–535 | DOI

[6] Martyshko P.S., Ladovskii I.V., Tsidaev A.G., “Construction of regional geophysical models based on the joint interpretation of gravitaty and seismic data”, Izvestiya. Physics of the Solid Earth, 46:11 (2010), 931–942 | DOI

[7] Ya. I. Hurgin, V. P. Yakovlev, Finitnye funktsii v fizike i tekhnike, Nauka, M., 1971

[8] Oblomskaya L.Ya., “Methods of successive approximation for linear equations in Banach spaces”, USSR Computational Mathematics and Mathematical Physics, 8:2 (1968), 239–253 | DOI | MR

[9] Martyshko P.S., Prutkin I.L., “Technology of division of the gravitational field sources in depth”, Geophysical Journal, 25:3 (2003), 30–34

[10] E. A. Mudretsova, K. E. Veselov, Gravirazvedka, Nedra, M., 1990

[11] V. I. Starostenko, Ustoichivye chislennye metody v zadachah gravimetrii, Naukova dumka, Kiev, 1978 | MR

[12] V. I. Starostenko, N. N. Chernaya, A. V. Chernyi, “Obratnaya zadacha gravimetrii dlya kontaktnoi poverhnosti. I”, Izv. RAN. Ser. Fizika Zemli, 1992, no. 6, 48–58 | MR

[13] V. I. Starostenko, N. N. Chernaya, A. V. Chernyi, “Obratnaya zadacha gravimetrii dlya kontaktnoi poverhnosti. II”, Izv. RAN. Ser. Fizika Zemli, 1993, no. 7, 47–56 | MR

[14] V. I. Starostenko, N. N. Chernaya, A. V. Chernyi, “Obratnaya zadacha gravimetrii dlya kontaktnoi poverhnosti. III”, Izv. RAN. Ser. Fizika Zemli, 1993, no. 7, 57–66 | MR

[15] E. N. Akimova, D. V. Gemaidinov, “Parallel-nye algoritmy resheniya zadachi gravimetrii o vosstanovlenii plotnosti v sloe”, Tr. IMM UrO RAN, 13, no. 3, 2007, 3–21

[16] M. M. Lavrent'ev, V. I. Starostenko, V. G. Filatov, Yu. V. Glasko, Primenenie regulyarizatsii v gravimagnitorazvedke pri poiske mestorozhdenii uglevodorodov, MGRI-RGGRU, M., 2010

[17] M. S. Zhdanov, Geophysical Inverse Theory and Regularization Problems, Elsevier, N.Y., 2002

[18] Sizikov V.S., Golov I.N., “Modeling of deposits by spheroids”, Izvestiya. Physics of the Solid Earth, 45:3 (2009), 258–271 | DOI | MR

[19] V. Sizikov, V. Evseev, Bars and Spheroids in Gravimetry Problem, Elsevier, NY, 2010

[20] I. V. Boikov, A. I. Boikova, Priblizhennye metody resheniya pryamyh i obratnyh zadach gravirazvedki, Izd-vo Penzenskogo gosudarstvennogo universiteta, Penza, 2013

[21] A. N. Tihonov, V. Ya. Arsenin, Metody resheniya nekorrektnyh zadach, Nauka, M., 1974

[22] M. M. Lavrent'ev, O nekotoryh nekorrektnyh zadachah matematicheskoi fiziki, Izd-vo SO AN SSSR, Novosibirsk, 1962