On the simultaneous restoration of the density and
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 3, pp. 289-308
Voir la notice de l'article provenant de la source Math-Net.Ru
Analytical and numerical methods for solving inverse problems of logarithmic and the Newtonian potentials are investigated. The following contact problem in the case of a Newtonian potential is considered. In the domain $\Omega\{\Omega: -l\leqslant x,y\leqslant l, H-\varphi(x,y)\leqslant z\leqslant H\}$, sources with the density $\rho(x,y)$, perturbing the Earth's gravitational field, are distributed. Here, $\varphi(x, y)$ is a non-negative finite function with the support $\Omega=[-l,l]^2$, $0\leqslant\varphi(x,y)\leqslant H$. It is required to simultaneously restore the depth $H$ of the occurrence of the contact surface $z=H$, the density $\rho(x,y)$ of sources, and the function $\varphi(x,y)$. The methods of simultaneous determination are based on the use of nonlinear models of potential theory which are developed in the paper. The following kinds of information are used as the basic ones: 1) values of the gravity field and its first and second derivatives; 2) values of the gravity field at the different heights. The possibility of the simultaneous recovery of the functions $\rho(x,y)$, $\varphi(x,y)$ and the constants $H$ in the analytical form is demonstrated. Iterative methods for their simultaneous recovery. The model examples demonstrate the effectiveness of the proposed numerical methods are constructed.
@article{SJVM_2020_23_3_a3,
author = {I. V. Boykov and V. A. Ryazantsev},
title = {On the simultaneous restoration of the density and},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {289--308},
publisher = {mathdoc},
volume = {23},
number = {3},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a3/}
}
TY - JOUR AU - I. V. Boykov AU - V. A. Ryazantsev TI - On the simultaneous restoration of the density and JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2020 SP - 289 EP - 308 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a3/ LA - ru ID - SJVM_2020_23_3_a3 ER -
I. V. Boykov; V. A. Ryazantsev. On the simultaneous restoration of the density and. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 3, pp. 289-308. http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a3/