Solving the Poisson equation with singularities by the least-squares collocation method
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 3, pp. 249-263.

Voir la notice de l'article provenant de la source Math-Net.Ru

New h-, p- and hp-versions of the least-squares collocation method are proposed and implemented for solving the Dirichlet problem for the Poisson equation. The paper considers some examples of solving problems with singularities such as large gradients, high growth rate of solution derivatives with increasing the order of differentiation, discontinuity of the second-order derivatives at the angular points of the domain boundary, and the oscillating solution with different frequencies in the presence of an infinite discontinuity for derivatives of any order. The new versions of the method are based on a special selection of collocation points in the roots of the Chebyshev polynomials of the first kind. Basis functions are defined as a product of the Chebyshev polynomials. The behavior of the numerical solution on a sequence of grids and with an increase in the degree of the approximating polynomial has been analyzed using exact analytical solutions. The formulas for the continuation operation necessary for the transition from a coarse mesh to a finer one on a multi-grid complex in the Fedorenko method have been obtained.
@article{SJVM_2020_23_3_a1,
     author = {V. A. Belyaev},
     title = {Solving the {Poisson} equation with singularities by the least-squares collocation method},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {249--263},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a1/}
}
TY  - JOUR
AU  - V. A. Belyaev
TI  - Solving the Poisson equation with singularities by the least-squares collocation method
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2020
SP  - 249
EP  - 263
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a1/
LA  - ru
ID  - SJVM_2020_23_3_a1
ER  - 
%0 Journal Article
%A V. A. Belyaev
%T Solving the Poisson equation with singularities by the least-squares collocation method
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2020
%P 249-263
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a1/
%G ru
%F SJVM_2020_23_3_a1
V. A. Belyaev. Solving the Poisson equation with singularities by the least-squares collocation method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 3, pp. 249-263. http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a1/

[1] V. A. Belyaev, V. P. Shapeev, “Reshenie zadachi Dirihle dlya uravneniya Puassona metodom kollokatsii i naimen'shih kvadratov v oblasti s diskretno zadannoi granitsei”, Vychislit. tekhnologii, 23:3 (2018), 15–30

[2] E. V. Vorozhtsov, V. P. Shapeev, “O kombinirovanii sposobov uskoreniya skhodimosti iteratsionnyh protsessov pri chislennom reshenii uravnenii Nav'e-Stoksa”, Vych. met. i programmirovanie, 18:1 (2017), 80–102

[3] R. P. Fedorenko, “O skorosti skhodimosti odnogo iteratsionnogo protsessa”, Zhurn. vychisl. matem. i matem. fiz., 4:3 (1964), 559–564

[4] I. Babuška, B. Q. Guo, “The h, p and h-p version of the finite element method; basis theory and applications”, Advan. Engineer. Software, 15:3–4 (1992), 159–174 | Zbl

[5] V. I. Isaev, V. P. Shapeev, S. A. Eremin, “Issledovanie svoistv metoda kollokatsii i naimen'shih kvadratov resheniya kraevyh zadach dlya uravneniya Puassona i uravnenii Nav'e-Stoksa”, Vychislit. tekhnologii, 12:3 (2007), 53–70 | Zbl

[6] V. I. Isaev, V. P. Shapeev, S. V. Idimeshev, “Varianty metoda kollokatsii i naimen'shih kvadratov povyshennoi tochnosti dlya chislennogo resheniya uravneniya Puassona”, Vychislit. tekhnologii, 16:13 (2011), 85–93 | Zbl

[7] A. G. Sleptsov, Yu. I. Shokin, “Adaptivnyi proektsionno-setochnyi metod dlya ellipticheskih zadach”, Zhurn. vychisl. matem. i matem. fiz., 37:2 (1997), 572–586 | Zbl

[8] Y. Saad, Numerical Methods for Large Eigenvalue Problems, Manchester Univ. Press, 1992 | MR | Zbl

[9] V. P. Shapeev, A. V. Shapeev, “Reshenie ellipticheskih zadach s osobennostyami po skhemam vysokogo poryadka approksimatsii”, Vychislit. tekhnologii, 11:2, Spetsial'nyi vypusk (2006), 84–91 | Zbl

[10] M. Abouali, J. E. Castillo, “Solving Poisson equation with Robin boundary condition on a curvilinear mesh using high order mimetic discretization methods”, Math. Comput. Simulat., 139 (2017), 23–36 | DOI | MR