On a posteriori estimation of the approximation error norm for an ensemble of independent solutions
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 3, pp. 233-248
Voir la notice de l'article provenant de la source Math-Net.Ru
An ensemble of independent numerical solutions enables one to construct a hypersphere around the approximate solution that contains the true solution. The analysis is based on some geometry considerations,
such as the triangle inequality and the measure concentration in the spaces of large dimensions. As a result,
there appears the feasibility for non-intrusive postprocessing that provides the error estimation on the ensemble of solutions. The numerical tests for two-dimensional compressible Euler equations are provided that
demonstrates properties of such postprocessing.
@article{SJVM_2020_23_3_a0,
author = {A. K. Alekseev and A. E. Bondarev},
title = {On a posteriori estimation of the approximation error norm for an ensemble of independent solutions},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {233--248},
publisher = {mathdoc},
volume = {23},
number = {3},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a0/}
}
TY - JOUR AU - A. K. Alekseev AU - A. E. Bondarev TI - On a posteriori estimation of the approximation error norm for an ensemble of independent solutions JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2020 SP - 233 EP - 248 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a0/ LA - ru ID - SJVM_2020_23_3_a0 ER -
%0 Journal Article %A A. K. Alekseev %A A. E. Bondarev %T On a posteriori estimation of the approximation error norm for an ensemble of independent solutions %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2020 %P 233-248 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a0/ %G ru %F SJVM_2020_23_3_a0
A. K. Alekseev; A. E. Bondarev. On a posteriori estimation of the approximation error norm for an ensemble of independent solutions. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 3, pp. 233-248. http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a0/