On a posteriori estimation of the approximation error norm for an ensemble of independent solutions
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 3, pp. 233-248

Voir la notice de l'article provenant de la source Math-Net.Ru

An ensemble of independent numerical solutions enables one to construct a hypersphere around the approximate solution that contains the true solution. The analysis is based on some geometry considerations, such as the triangle inequality and the measure concentration in the spaces of large dimensions. As a result, there appears the feasibility for non-intrusive postprocessing that provides the error estimation on the ensemble of solutions. The numerical tests for two-dimensional compressible Euler equations are provided that demonstrates properties of such postprocessing.
@article{SJVM_2020_23_3_a0,
     author = {A. K. Alekseev and A. E. Bondarev},
     title = {On a posteriori estimation of the approximation error norm for an ensemble of independent solutions},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {233--248},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a0/}
}
TY  - JOUR
AU  - A. K. Alekseev
AU  - A. E. Bondarev
TI  - On a posteriori estimation of the approximation error norm for an ensemble of independent solutions
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2020
SP  - 233
EP  - 248
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a0/
LA  - ru
ID  - SJVM_2020_23_3_a0
ER  - 
%0 Journal Article
%A A. K. Alekseev
%A A. E. Bondarev
%T On a posteriori estimation of the approximation error norm for an ensemble of independent solutions
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2020
%P 233-248
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a0/
%G ru
%F SJVM_2020_23_3_a0
A. K. Alekseev; A. E. Bondarev. On a posteriori estimation of the approximation error norm for an ensemble of independent solutions. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 3, pp. 233-248. http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a0/