Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2020_23_3_a0, author = {A. K. Alekseev and A. E. Bondarev}, title = {On a posteriori estimation of the approximation error norm for an ensemble of independent solutions}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {233--248}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a0/} }
TY - JOUR AU - A. K. Alekseev AU - A. E. Bondarev TI - On a posteriori estimation of the approximation error norm for an ensemble of independent solutions JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2020 SP - 233 EP - 248 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a0/ LA - ru ID - SJVM_2020_23_3_a0 ER -
%0 Journal Article %A A. K. Alekseev %A A. E. Bondarev %T On a posteriori estimation of the approximation error norm for an ensemble of independent solutions %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2020 %P 233-248 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a0/ %G ru %F SJVM_2020_23_3_a0
A. K. Alekseev; A. E. Bondarev. On a posteriori estimation of the approximation error norm for an ensemble of independent solutions. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 3, pp. 233-248. http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a0/
[1] Yu. I. Shokin, N. N. Yanenko, Metod differentsial'nogo priblizheniya, Nauka, Novosibirsk, 1985
[2] R. D. Richtmyer, K. W. Morton, Difference Methods for Initial Value Problems, John Wiley and Sons, N.Y., 1967 | MR | Zbl
[3] R. D. Skeel, “Thirteen ways to estimate global error”, Numer. Math., 48 (1986), 1–20 | DOI | MR | Zbl
[4] Ch. J. Roy, “Review of discretization error estimators in scientific computing”, AIAA J., 126 (2010), 1–29
[5] I. Babuska, W. Rheinboldt, “A-posteriori error estimates for the finite element method Int”, J. Numer. Methods in Engineering, 12 (1978), 1597–1615 | DOI | Zbl
[6] S. I. Repin, “A Posteriori Estimates for Partial Differential Equations”, Radon Series on Computational and Applied Mathematics, 4, Walter de Gruyter, 2008 | MR
[7] G. I. Marchuk, V. V. Shaidurov, Povyshenie tochnosti resheniya raznostnyh skhem, Nauka, M., 1979
[8] N. N. Kuznetsov, “Tochnost- nekotoryh priblizhennyh metodov rascheta slabyh reshenii kvazilineinogo uravneniya pervogo poryadka”, Zhurn. vychisl. matem. i mat. fiziki, 16:6 (1976), 1489–1502 | MR | Zbl
[9] J. W. Banks, J. A. F. Hittinger, C. S. Woodward, “Numerical error estimation for nonlinear hyperbolic PDEs via nonlinear error transport”, CMAME, 213-216 (2012), 1–15 | MR | Zbl
[10] M. H. Carpenter, J. H. Casper, “Accuracy of shock capturing in two spatial dimensions”, AIAA J., 37:9 (1999), 1072–1079 | DOI
[11] J. W. Banks, T. D. Aslam, “Richardson extrapolation for linearly degenerate discontinuities”, J. of Scientific Computing, 57:1 (2012), 1–15 | DOI | MR
[12] Ch. J. Roy, “Grid convergence error analysis for mixed-order numerical schemes”, AIAA J., 41:4 (2003), 595–604 | DOI
[13] A. K. Alexeev, A. E. Bondarev, “On some features of Richardson extrapolation for compressible inviscid flows”, Mathematica Montisnigri, XL (2017), 42–54 | MR
[14] D. Burago, Yu. D. Burago, S. Ivanov, A Course in Metric Geometry, AMS, 2001 | MR | Zbl
[15] A. N. Gorban, I. Y. Tyukin, “Blessing of dimensionality: mathematical foundations of the statistical physics of data”, Philos. Trans. Royal Soc. A, 2018 | DOI | MR
[16] P. Sidiropoulos, N-sphere Chord Length Distribution, Cornell University, 2014, arXiv: 1411.5639v1
[17] Zorich V.A., “Multidimensional geometry, functions of many variables and probability”, Theory Probab. Appl., 59:3 (2015), 481–493 | DOI | MR | Zbl
[18] Alekseev A.K., Makhnev I.N., “On using the Lagrange coefficients for a posteriori error estimation”, Num. Anal. Appl., 2:4 (2009), 302–313 | DOI | MR | Zbl
[19] L. Wang, Y. Zhang, J. Feng, “On the euclidean distance of images”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 27:8 (2005), 1334–1339 | DOI
[20] P. Ch. Mahalanobis, “On the generalized distance in statistics”, Proc. of the National Institute of Sciences of place country-region India, 2:1 (1936), 49–55 | MR | Zbl
[21] M. M. Karchevskii, M. F. Pavlova, “Uravneniya matematicheskoi fiziki”, Dopolnitel'nye glavy, 2008, Izd-vo KGU, Kazan'
[22] J. H. Bramble, R. D. Lazarov, J. E. Pasciak, “A least squares approach based on a discrete minus one inner product for first order systems”, Mathematics of Computation, 66:219 (1997), 935–955 | DOI | MR | Zbl
[23] A. A. Samarskii, Teoriya raznostnyh skhem, Nauka, M., 1977
[24] B. Edney, “Effects of shock impingement on the heat transfer around blunt bodies”, AIAA J., 6:1 (1968), 15–21 | DOI
[25] R. Courant, E. Isaacson, M. Rees, “On the solution of nonlinear hyperbolic differential equations by finite differences”, Comm. Pure Appl. Math., 5 (1952), 243–255 | DOI | MR | Zbl
[26] A. G. Kulikovskii, N. V. Pogorelov, A. Yu. Semenov, Matematicheskie voprosy chislennogo resheniya giperbolicheskih sistem uravnenii, Fizmatlit, M., 2001
[27] B. Van Leer, “Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method”, J. Comput. Phys., 32:1 (1979), 101–136 | DOI | Zbl
[28] M. Sun, K. Katayama, “An artificially upstream flux vector splitting for the Euler equations”, JCP, 189 (2003), 305–329 | MR | Zbl
[29] S. Osher, S. Chakravarthy, “Very high order accurate TVD schemes”, Oscillation Theory, Computation, and Methods of Compensated Compactness, 1984, 229–274 | MR
[30] C. T. Lin, J. Y. Yeh, J. Y. Chen, “High resolution finite volume scheme for the quantum hydrodynamic equations”, JCP, 228:5 (2009), 1713–1732 | MR | Zbl
[31] S. Yamamoto, H. Daiguji, “Higher-order-accurate upwind schemes for solving the compressible Euler and Navier-Stokes equations”, Computers and Fluids, 22 (1993), 259–270 | DOI | MR | Zbl
[32] Hy Trac, Ue-Li Pen, A Primer on Eulerian Computational Fluid Dynamics for Astrophysics, Cornell University, 2002, arXiv: astro-ph/0210611v2
[33] A. K. Alekseev, A. E. Bondarev, I. M. Navon, On Estimation of Discretization Error Norm via Ensemble of Approximate solutions, Cornell University, 2017, arXiv: 1704.04994
[34] A. K. Alekseev, A. E. Bondarev, I. M. Navon, On Triangle Inequality Based Approximation Error Estimation, Cornell University, 2017, arXiv: 1708.04604
[35] A. K. Alexeev, A. E. Bondarev, “On exact solution enclosure on ensemble of numerical simulations”, Mathematica Montisnigri, XXXVIII (2017), 63–77 | MR