On a posteriori estimation of the approximation error norm for an ensemble of independent solutions
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 3, pp. 233-248.

Voir la notice de l'article provenant de la source Math-Net.Ru

An ensemble of independent numerical solutions enables one to construct a hypersphere around the approximate solution that contains the true solution. The analysis is based on some geometry considerations, such as the triangle inequality and the measure concentration in the spaces of large dimensions. As a result, there appears the feasibility for non-intrusive postprocessing that provides the error estimation on the ensemble of solutions. The numerical tests for two-dimensional compressible Euler equations are provided that demonstrates properties of such postprocessing.
@article{SJVM_2020_23_3_a0,
     author = {A. K. Alekseev and A. E. Bondarev},
     title = {On a posteriori estimation of the approximation error norm for an ensemble of independent solutions},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {233--248},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a0/}
}
TY  - JOUR
AU  - A. K. Alekseev
AU  - A. E. Bondarev
TI  - On a posteriori estimation of the approximation error norm for an ensemble of independent solutions
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2020
SP  - 233
EP  - 248
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a0/
LA  - ru
ID  - SJVM_2020_23_3_a0
ER  - 
%0 Journal Article
%A A. K. Alekseev
%A A. E. Bondarev
%T On a posteriori estimation of the approximation error norm for an ensemble of independent solutions
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2020
%P 233-248
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a0/
%G ru
%F SJVM_2020_23_3_a0
A. K. Alekseev; A. E. Bondarev. On a posteriori estimation of the approximation error norm for an ensemble of independent solutions. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 3, pp. 233-248. http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a0/

[1] Yu. I. Shokin, N. N. Yanenko, Metod differentsial'nogo priblizheniya, Nauka, Novosibirsk, 1985

[2] R. D. Richtmyer, K. W. Morton, Difference Methods for Initial Value Problems, John Wiley and Sons, N.Y., 1967 | MR | Zbl

[3] R. D. Skeel, “Thirteen ways to estimate global error”, Numer. Math., 48 (1986), 1–20 | DOI | MR | Zbl

[4] Ch. J. Roy, “Review of discretization error estimators in scientific computing”, AIAA J., 126 (2010), 1–29

[5] I. Babuska, W. Rheinboldt, “A-posteriori error estimates for the finite element method Int”, J. Numer. Methods in Engineering, 12 (1978), 1597–1615 | DOI | Zbl

[6] S. I. Repin, “A Posteriori Estimates for Partial Differential Equations”, Radon Series on Computational and Applied Mathematics, 4, Walter de Gruyter, 2008 | MR

[7] G. I. Marchuk, V. V. Shaidurov, Povyshenie tochnosti resheniya raznostnyh skhem, Nauka, M., 1979

[8] N. N. Kuznetsov, “Tochnost- nekotoryh priblizhennyh metodov rascheta slabyh reshenii kvazilineinogo uravneniya pervogo poryadka”, Zhurn. vychisl. matem. i mat. fiziki, 16:6 (1976), 1489–1502 | MR | Zbl

[9] J. W. Banks, J. A. F. Hittinger, C. S. Woodward, “Numerical error estimation for nonlinear hyperbolic PDEs via nonlinear error transport”, CMAME, 213-216 (2012), 1–15 | MR | Zbl

[10] M. H. Carpenter, J. H. Casper, “Accuracy of shock capturing in two spatial dimensions”, AIAA J., 37:9 (1999), 1072–1079 | DOI

[11] J. W. Banks, T. D. Aslam, “Richardson extrapolation for linearly degenerate discontinuities”, J. of Scientific Computing, 57:1 (2012), 1–15 | DOI | MR

[12] Ch. J. Roy, “Grid convergence error analysis for mixed-order numerical schemes”, AIAA J., 41:4 (2003), 595–604 | DOI

[13] A. K. Alexeev, A. E. Bondarev, “On some features of Richardson extrapolation for compressible inviscid flows”, Mathematica Montisnigri, XL (2017), 42–54 | MR

[14] D. Burago, Yu. D. Burago, S. Ivanov, A Course in Metric Geometry, AMS, 2001 | MR | Zbl

[15] A. N. Gorban, I. Y. Tyukin, “Blessing of dimensionality: mathematical foundations of the statistical physics of data”, Philos. Trans. Royal Soc. A, 2018 | DOI | MR

[16] P. Sidiropoulos, N-sphere Chord Length Distribution, Cornell University, 2014, arXiv: 1411.5639v1

[17] Zorich V.A., “Multidimensional geometry, functions of many variables and probability”, Theory Probab. Appl., 59:3 (2015), 481–493 | DOI | MR | Zbl

[18] Alekseev A.K., Makhnev I.N., “On using the Lagrange coefficients for a posteriori error estimation”, Num. Anal. Appl., 2:4 (2009), 302–313 | DOI | MR | Zbl

[19] L. Wang, Y. Zhang, J. Feng, “On the euclidean distance of images”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 27:8 (2005), 1334–1339 | DOI

[20] P. Ch. Mahalanobis, “On the generalized distance in statistics”, Proc. of the National Institute of Sciences of place country-region India, 2:1 (1936), 49–55 | MR | Zbl

[21] M. M. Karchevskii, M. F. Pavlova, “Uravneniya matematicheskoi fiziki”, Dopolnitel'nye glavy, 2008, Izd-vo KGU, Kazan'

[22] J. H. Bramble, R. D. Lazarov, J. E. Pasciak, “A least squares approach based on a discrete minus one inner product for first order systems”, Mathematics of Computation, 66:219 (1997), 935–955 | DOI | MR | Zbl

[23] A. A. Samarskii, Teoriya raznostnyh skhem, Nauka, M., 1977

[24] B. Edney, “Effects of shock impingement on the heat transfer around blunt bodies”, AIAA J., 6:1 (1968), 15–21 | DOI

[25] R. Courant, E. Isaacson, M. Rees, “On the solution of nonlinear hyperbolic differential equations by finite differences”, Comm. Pure Appl. Math., 5 (1952), 243–255 | DOI | MR | Zbl

[26] A. G. Kulikovskii, N. V. Pogorelov, A. Yu. Semenov, Matematicheskie voprosy chislennogo resheniya giperbolicheskih sistem uravnenii, Fizmatlit, M., 2001

[27] B. Van Leer, “Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method”, J. Comput. Phys., 32:1 (1979), 101–136 | DOI | Zbl

[28] M. Sun, K. Katayama, “An artificially upstream flux vector splitting for the Euler equations”, JCP, 189 (2003), 305–329 | MR | Zbl

[29] S. Osher, S. Chakravarthy, “Very high order accurate TVD schemes”, Oscillation Theory, Computation, and Methods of Compensated Compactness, 1984, 229–274 | MR

[30] C. T. Lin, J. Y. Yeh, J. Y. Chen, “High resolution finite volume scheme for the quantum hydrodynamic equations”, JCP, 228:5 (2009), 1713–1732 | MR | Zbl

[31] S. Yamamoto, H. Daiguji, “Higher-order-accurate upwind schemes for solving the compressible Euler and Navier-Stokes equations”, Computers and Fluids, 22 (1993), 259–270 | DOI | MR | Zbl

[32] Hy Trac, Ue-Li Pen, A Primer on Eulerian Computational Fluid Dynamics for Astrophysics, Cornell University, 2002, arXiv: astro-ph/0210611v2

[33] A. K. Alekseev, A. E. Bondarev, I. M. Navon, On Estimation of Discretization Error Norm via Ensemble of Approximate solutions, Cornell University, 2017, arXiv: 1704.04994

[34] A. K. Alekseev, A. E. Bondarev, I. M. Navon, On Triangle Inequality Based Approximation Error Estimation, Cornell University, 2017, arXiv: 1708.04604

[35] A. K. Alexeev, A. E. Bondarev, “On exact solution enclosure on ensemble of numerical simulations”, Mathematica Montisnigri, XXXVIII (2017), 63–77 | MR