To calculating heat-conducting vapor–gas–droplet mixture flows
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 2, pp. 201-217.

Voir la notice de l'article provenant de la source Math-Net.Ru

A characteristic analysis of the equations of a single–velocity heat–conducting vapor–gas–drop mixture is carried out, in which the interfraction heat exchange is taken into account and their hyperbolicity is shown. The computational formulas of the Godunov method with a linearized Riemann solver are presented with whose use a number of the mixture flows are calculated.
@article{SJVM_2020_23_2_a7,
     author = {V. S. Surov},
     title = {To calculating heat-conducting vapor{\textendash}gas{\textendash}droplet mixture flows},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {201--217},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_2_a7/}
}
TY  - JOUR
AU  - V. S. Surov
TI  - To calculating heat-conducting vapor–gas–droplet mixture flows
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2020
SP  - 201
EP  - 217
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2020_23_2_a7/
LA  - ru
ID  - SJVM_2020_23_2_a7
ER  - 
%0 Journal Article
%A V. S. Surov
%T To calculating heat-conducting vapor–gas–droplet mixture flows
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2020
%P 201-217
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2020_23_2_a7/
%G ru
%F SJVM_2020_23_2_a7
V. S. Surov. To calculating heat-conducting vapor–gas–droplet mixture flows. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 2, pp. 201-217. http://geodesic.mathdoc.fr/item/SJVM_2020_23_2_a7/

[1] A. Murrone, H. Guillard, “A five equation reduced model for compressible two phase flow problems”, J. Comput. Phys., 202:2 (2005), 664–698 | DOI | MR | Zbl

[2] J. Wackers, B. Koren, “A fully conservative model for compressible two-fluid flow”, J. Numer. Meth. Fluids, 47:10–11 (2005), 1337–1343 | DOI | MR | Zbl

[3] J. J. Kreeft, B. Koren, “A new formulation of Kapila's five-equation model for compressible two-fluid flow, and its numerical treatment”, J. Comput. Phys., 229:18 (2010), 6220–6242 | DOI | MR | Zbl

[4] V. S. Surov, “Odnoskorostnaya model' geterogennoi sredy”, Matematicheskoe modelirovanie, 13:10 (2001), 27–42 | MR | Zbl

[5] V. S. Surov, “One-velocity model of a heterogeneous medium with a hyperbolic adiabatic kernel”, Computational Mathematics and Mathematical Physics, 48:6 (2008), 1048–1062 | DOI | MR | Zbl

[6] V. S. Surov, “Reflection of an air shock wave from a foam layer”, High Temperature, 38:1 (2000), 97–105 | DOI

[7] V. S. Surov, “Raschet vzaimodeistviya vozdushnoi udarnoi volny s poristym materialom”, Chelyabinskii fiziko-matematicheskii zhurnal, 6:1 (1997), 124–134

[8] Surov V.S., “Analysis of wave phenomena in gas-liquid media”, High Temperature, 36:4 (1998), 600–606

[9] R. Saurel, P. Boivin, O. Lemetayer, “A general formulation for cavitating, boiling and evaporating flows”, Computers and Fluids, 128 (2016), 53–64 | DOI | MR | Zbl

[10] A. K. Kapila, D. W. Schwendeman, J. R. Gambino, W. D. Henshaw, “A numerical study of the dynamics of detonation initiated by cavity collapse”, Shock Waves, 25:6 (2015), 545–572 | DOI

[11] Surov V.S., “On localization of contact surfaces in multifluid hydrodynamics”, Journal of Engineering Physics and Thermophysics, 83:3 (2010), 549–559 | DOI

[12] Surov V.S., “A hyperbolic model of one-velocity multicomponent heat-conducting medium”, High Temperature, 47:6 (2009), 870–878 | DOI

[13] C. Cattaneo, “A form of heat conduction equation which eliminates the paradox of instantaneous propagation”, Compt. Rend. Acad. Sci. Paris, 247 (1958), 431–433 | MR

[14] S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, G. P. Prokopov, Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR

[15] A. G. Kulikovskii, N. V. Pogorelov, A. Yu. Semenov, Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2012

[16] E. F. Toro, “Riemann solvers with evolved initial condition”, Int. J. for Numerical Methods in Fluids, 52 (2006), 433–453 | DOI | MR | Zbl

[17] G. Uollis, Odnomernye dvukhfaznye techeniya, Mir, M., 1972

[18] V. S. Surov, “The Godunov method for calculating multidimensional flows of a one-velocity multicomponent mixture”, Journal of Engineering Physics and Thermophysics, 89:5 (2016), 1227–1240 | DOI

[19] Surov V.S., “The Riemann problem for one-velocity model of multicomponent mixture”, High Temperature, 47:2 (2009), 263–271 | DOI

[20] Surov V.S., “On a method of approximate solution of the Riemann problem for a one-velocity flow of a multicomponent mixture”, Journal of Engineering Physics and Thermophysics, 83:2 (2010), 373–379 | DOI

[21] Surov V.S., “Onevelocity model of a multicomponent heat-conducting medium”, Journal of Engineering Physics and Thermophysics, 83:1 (2010), 146–157 | DOI

[22] Surov V.S., “Numerical simulation of the interaction of an air shock wave with a surface gas-dust layer”, Journal of Engineering Physics and Thermophysics, 91:2 (2018), 370–376 | DOI

[23] Surov V.S., “Hyperbolic models in the mechanics of heterogeneous media”, Computational Mathematics and Mathematical Physics, 54:1 (2014), 148–157 | DOI | DOI | MR | Zbl

[24] Surov V.S., “Diffraction of a shock wave on a wedge in a dusty gas”, Journal of Engineering Physics and Thermophysics, 90:5 (2017), 1170–1177 | DOI

[25] V. S. Surov, “Interaction of shock waves with bubble-liquid drops”, Technical Physics. The Russian Journal of Applied Physics, 46:6 (2001), 662–667