Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2020_23_2_a6, author = {A. V. Penenko and A. B. Salimova}, title = {Source indentification for the {Smoluchowski} equation}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {183--199}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_2_a6/} }
TY - JOUR AU - A. V. Penenko AU - A. B. Salimova TI - Source indentification for the Smoluchowski equation JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2020 SP - 183 EP - 199 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2020_23_2_a6/ LA - ru ID - SJVM_2020_23_2_a6 ER -
A. V. Penenko; A. B. Salimova. Source indentification for the Smoluchowski equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 2, pp. 183-199. http://geodesic.mathdoc.fr/item/SJVM_2020_23_2_a6/
[1] Pope C. Arden, W. Dockery Douglas, “Health effects of fine particulate air pollution: lines that connect”, J. of the Air Waste Management Association, 56:6 (2006), 709–742 | DOI
[2] J. H. Seinfeld, S. N. Pandis, “Atmospheric chemistry and physics”, Air Pollution to Climate Change, 2nd edition, John Wiley Sons, 2006
[3] M. V. Smoluchowski, “Drei vortrage uber diffusion, brownsche bewegung und koagulation von kolloidteilchen”, Physik. Zeit., 17 (1916), 557–585
[4] M. V. Smoluchowski, “Uber brownsche molekularbewegung unter einwirkung äußerer Kräfte und deren zusammenhang mit der verallgemeinerten diffusionsgleichung”, Annalten der Physik, 353:24 (1916), 1103–1112 | DOI
[5] Hans Mueller, “Zur allgemeinen theorie ser raschen koagulation”, Kolloidchemische Beihefte, 27:6–12 (1928), 223–250
[6] V. A. Galkin, “Uravnenie Smolukhovskogo”, Fizmatlit, M., 2001
[7] A. E. Aloyan, “Modelirovanie dinamiki i kinetiki gazovykh primesei i aerozolei v atmosfere”, Nauka, M., 2008
[8] S. A. Matveev, A. P. Smirnov, E. E. Tyrtyshnikov, “A fast numerical method for the Cauchy problem for the Smoluchowski equation”, J. of Computational Physics, 282 (2015), 23–32 | DOI | MR | Zbl
[9] Matveev S.A, Krapivsky P.L, A. P. Smirnov, E. E. Tyrtyshnikov, N. V. Brilliantov, “Oscillations in aggregation-shattering processes”, Physical Review Letters, 119:26 (2017), 1–10 | DOI | MR
[10] V. I. Agoshkov, Metody optimal'nogo upravleniya i sopryazhennykh uravnenii v zadachakh matematicheskoi fiziki, IVM RAN, M., 2003
[11] Mirzaev Inom, C. Byrne Erin, Bortz David, “An inverse problem for a class of conditional probability measure-dependent evolution equations”, Inverse Problems, 32:9 (2016), 095005 | DOI | MR | Zbl
[12] G. I. Marchuk, “O postanovke nekotorykh obratnykh zadach”, DAN SSSR, 156:3 (1964), 503–506 | Zbl
[13] G. I. Marchuk, Sopryazhennye uravneniya i analiz slozhnykh sistem, Nauka, M., 1992
[14] J. P. Issartel, “Rebuilding sources of linear tracers after atmospheric concentration measurements”, Atmospheric Chemistry and Physics, 3:6 (2003), 2111–2125 | DOI
[15] J. P. Issartel, “Emergence of a tracer source from air concentration measurements, a new strategy for linear assimilation”, Atmospheric Chemistry and Physics, 5:1 (2005), 249–273 | DOI
[16] Evensen Geir, “Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error”, J. of Geophysical Research, 99:C5, 10143 | MR
[17] V. I. Agoshkov, P. B. Dubovski, “Solution of the reconstruction problem of a source function in the coagulation-fragmentation equation”, Russ. J. of Numerical Analysis and Mathematical Modelling, 17:4 (2002), 319–330 | DOI | MR | Zbl
[18] F. Bennett Andrew, Inverse Methods in Physical Oceanography, Cambridge Monographs on Mechanics, Cambridge University Press, Cambridge, 1992 | MR | Zbl
[19] A. L. Karchevsky, “Reformulation of an inverse problem statement that reduces computational costs”, Eurasian J. of Mathematical and Computer Applications, 1:2 (2013), 4–20 | DOI | MR
[20] A. V. Penenko, “Soglasovannye chislennye skhemy dlya resheniya nelineinykh obratnykh zadach identifikatsii istochnikov gradientnymi algoritmami i metodami N'yutona–Kantorovicha”, Sib. zhurn. vychisl. matematiki, 21:1 (2018), 99–116 | MR | Zbl
[21] A. V. Penenko, “Metod N'yutona–Kantorovicha dlya resheniya obratnykh zadach identifikatsii istochnikov v modelyakh produktsii-destruktsii s dannymi tipa vremennykh ryadov”, Sib. zhurn. vychisl. matematiki, 22:1 (2019), 57–79 | MR
[22] F. X. Le Dimet, I. Souopgui, O. Titaud et al., “Toward the assimilation of images”, Nonlinear Processes in Geophysics, 22:1 (2015), 15–32 | DOI
[23] A. V. Penenko, “O reshenii obratnoi koeffitsientnoi zadachi teploprovodnosti metodom proektsii gradienta”, Sibirskie elektronnye matematicheskie izvestiya, 23, Tr. Pervoi mezhdunarodnoi molodezhnoi shkoly-konferentsii «Teoriya i chislennye metody resheniya obratnykh i nekorrektnykh zadach». Chast' I (2010), 178–198
[24] A. V. Penenko, S. V. Nikolaev, S. K. i dr. Golushko, “Chislennye algoritmy identifikatsii koeffitsienta diffuzii v zadachakh tkanevoi inzhenerii”, Mat. biol. i bioinf., 11:2 (2016), 426–444 | DOI
[25] A. V. Penenko, A. A. Sorokovoi, K. E. Sorokovaya, “Chislennaya model' transformatsii bioaerozolei v atmosfere”, Optika atmosfery i okeana, 29:6 (2016), 462–466
[26] Hesstvedt Eigil, Hov Oystein, Ivar S. A. Isaksen, “Quasi-steady-state approximations in air pollution modeling: Comparison of two numerical schemes for oxidant prediction”, Int. J. of Chemical Kinetics, 10:9 (1978), 971–994 | DOI
[27] GNU Scientific Library Reference Manual Edition 2.2.1, for GSL Version 2.2.1, , 2009 https://www.gnu.org/software/gsl/manual/html_node/index_old.html