Finite element method for the Stokes–Darcy problem with a new boundary condition
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 2, pp. 165-181
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper considers numerical methods for approaching and simulate the Stokes–Darcy problem, with a
new boundary condition. We study herein a robust stabilized fully mixed discretization technique, this method
ensures the stability of the finite element scheme and does not use any Lagrange multipliers to introduce a
stabilization term in the temporal Stokes–Darcy problem discretization. The well-posedness of the finite
element scheme and its convergence analysis are also derived. Finally, the efficiency and accuracy of the
numerical methods are illustrated by different numerical tests
@article{SJVM_2020_23_2_a5,
author = {O. El Moutea and H. El Amri and A. El Akkad},
title = {Finite element method for the {Stokes{\textendash}Darcy} problem with a new boundary condition},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {165--181},
publisher = {mathdoc},
volume = {23},
number = {2},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_2_a5/}
}
TY - JOUR AU - O. El Moutea AU - H. El Amri AU - A. El Akkad TI - Finite element method for the Stokes–Darcy problem with a new boundary condition JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2020 SP - 165 EP - 181 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2020_23_2_a5/ LA - ru ID - SJVM_2020_23_2_a5 ER -
%0 Journal Article %A O. El Moutea %A H. El Amri %A A. El Akkad %T Finite element method for the Stokes–Darcy problem with a new boundary condition %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2020 %P 165-181 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2020_23_2_a5/ %G ru %F SJVM_2020_23_2_a5
O. El Moutea; H. El Amri; A. El Akkad. Finite element method for the Stokes–Darcy problem with a new boundary condition. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 2, pp. 165-181. http://geodesic.mathdoc.fr/item/SJVM_2020_23_2_a5/