Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2020_23_2_a5, author = {O. El Moutea and H. El Amri and A. El Akkad}, title = {Finite element method for the {Stokes{\textendash}Darcy} problem with a new boundary condition}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {165--181}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_2_a5/} }
TY - JOUR AU - O. El Moutea AU - H. El Amri AU - A. El Akkad TI - Finite element method for the Stokes–Darcy problem with a new boundary condition JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2020 SP - 165 EP - 181 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2020_23_2_a5/ LA - ru ID - SJVM_2020_23_2_a5 ER -
%0 Journal Article %A O. El Moutea %A H. El Amri %A A. El Akkad %T Finite element method for the Stokes–Darcy problem with a new boundary condition %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2020 %P 165-181 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2020_23_2_a5/ %G ru %F SJVM_2020_23_2_a5
O. El Moutea; H. El Amri; A. El Akkad. Finite element method for the Stokes–Darcy problem with a new boundary condition. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 2, pp. 165-181. http://geodesic.mathdoc.fr/item/SJVM_2020_23_2_a5/
[1] R. A. Adams, J. J. F. Fournier, Sobolev Spaces, Pure Appl. Math., 140, 2nd ed., Elsevier, Amsterdam, 2003 | MR
[2] M. Ainsworth, J. Oden, “A posteriori error estimators for the Stokes and Oseen equations”, SIAM J. Numer. Anal., 34 (1997), 228–245 | DOI | MR | Zbl
[3] T. Arbogast, D. S. Brunson, “A computational method for approximating a Darcy-Stokes system governing a vuggy porous medium”, Comput. Geosci., 11 (2007), 207–218 | DOI | MR | Zbl
[4] D. N. Arnold, F. Brezzi, M. Fortin, “A stable finite element for the Stokes equations”, Calcolo, 21 (1984), 337–344 | DOI | MR | Zbl
[5] B. Amaziane, M. El Ossmani, C. Serres, “Numerical modeling of the flow and transport of radionuclides in heterogeneous porous media”, Comput. Geosci., 12 (2008), 437–449 | DOI | MR | Zbl
[6] I. Babuska, “Error-bounds for finite element method”, Numer. Math., 16 (1971), 322–333 | DOI | MR | Zbl
[7] L. Badea, M. Discacciati, A. Quarteroni, “Numerical analysis of the Navier–Stokes/Darcy coupling”, Numer. Math., 115 (2010), 195–227 | DOI | MR | Zbl
[8] R. E. Bank, B. Welfert, “A posteriori error estimates for the Stokes problem”, SIAM J. Numer. Anal., 28 (1991), 591–623 | DOI | MR | Zbl
[9] M. Benzi, G. H. Golub, J. Liesen, “Numerical solution of saddle point problems”, Acta Numer., 14 (2005), 1–137 | DOI | MR | Zbl
[10] Y. Boubendir, S. Tlupova, “Domain decomposition methods for solving Stokes–Darcy problems with boundary integrals”, SIAM J. Sci. Comput., 35 (2013), B82–B106 | DOI | MR | Zbl
[11] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, 15, Springer, NY, 1991 | DOI | MR | Zbl
[12] F. Brezzi, J. Jr. Douglas, M. Fortin, L. D. Marini, “Efficient rectangular mixed finite elements in two and three space variables”, Math. Model. Num. Anal., 21 (1987), 581–604 | DOI | MR | Zbl
[13] F. Brezzi, “On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers”, RAIRO Anal., 8 (1974), 129–151 | MR | Zbl
[14] E. Burman, P. Hansbo, “A unified stabilized method for Stokes' and Darcy's equations”, J. Comput. Appl. Math., 198 (2007), 35–51 | DOI | MR | Zbl
[15] M. Cai, M. Mu, J. Xu, “Numerical solution to a mixed Navier–Stokes/Darcy model by the two-grid approach”, SIAM J. Numer. Anal., 47 (2009), 3325–3338 | DOI | MR | Zbl
[16] J. Camaño, G. N. Gatica, R. Oyarzúa, R. Ruiz-Baier, P. Venegas, “New fully-mixed finite element methods for the Stokes-Darcy coupling”, Comput. Methods Appl. Mech. Eng, 295 (2015), 362–395 | DOI | MR | Zbl
[17] Y. Cao, M. Gunzburger, X. M. He, X. Wang, “Robin-Robin domain decomposition methods for the steady-state Stokes–Darcy system with the Beavers–Joseph interface condition”, Numer. Math., 117 (2011), 601–629 | DOI | MR | Zbl
[18] Y. Cao, M. Gunzburger, F. Hua, X. Wang, “Coupled Stokes–Darcy model with Beavers–Joseph interface boundary condition”, Commun. Math. Sci., 8 (2010), 1–25 | DOI | MR | Zbl
[19] C. Carstensen, S. A. Funken, “A posteriori error control in low-order finite element discretizations of incompressible stationary flow problems”, Math. Comp., 70 (2001), 1353–1381 | DOI | MR | Zbl
[20] G. Chavent, J. Jaffre, Mathematical Models and Finite Elements in Reservoir Simulation, Elsevier Science Publishers BV, Netherlands, 1986
[21] M. Discacciati, E. Miglio, A. Quarteroni, “Mathematical and numerical models for coupling surface and groundwater flows”, Appl. Numer. Math., 43 (2002), 57–74 | DOI | MR | Zbl
[22] M. Discacciati, A. Quarteroni, “Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations”, Comput. Vis. Sci., 6 (2004), 93–103 | DOI | MR | Zbl
[23] G. Du, L. Zuo, “Local and parallel finite element method for the mixed Navier-Stokes/Darcy model with Beavers-Joseph interface conditions”, Acta Math. Sci., 37B (2017), 1331–1347 | MR | Zbl
[24] A. Elakkad, A. Elkhalfi, N. Guessous, “An a posteriori error estimate for mixed finite element approximations of the Navier-Stokes equations”, J. Korean Math. Soc., 48:3 (2011), 529–550 | DOI | MR | Zbl
[25] H. Elman, D. Silvester, A. Wathen, Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics, 2nd ed., Oxford University Press, Oxford, 2014 | MR | Zbl
[26] G. N. Gatica, R. Oyarzúa, F. J. Sayas, “Analysis of fully-mixed finite element methods for the Stokes–Darcy coupled problem”, Math. Comput., 80 (2011), 1911–1948 | DOI | MR | Zbl
[27] G. N. Gatica, R. Oyarzúa, F. J. Sayas, “Convergence of a family of Galerkin discretizations for the Stokes–Darcy coupled problem”, Numer. Methods Partial Differential Equations, 27 (2011), 721–748 | DOI | MR | Zbl
[28] U. Ghia, K. Ghia, C. Shin, “High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method”, J. Comput. Phys., 48 (1982), 387–395 | DOI
[29] V. Girault, B. Rivière, “DG approximation of coupled Navier–Stokes and Darcy equations by Beaver–Joseph–Saffman interface condition”, SIAM J. Numer. Anal., 47 (2009), 2052–2089 | DOI | MR | Zbl
[30] X. M. He, J. Li, Y. P. Lin, J. Ming, “A domain decomposition method for the steadystate Navier–Stokes–Darcy model with the Beavers–Joseph interface condition”, SIAM J. Sci. Comput., 37 (2015), S264–S290 | DOI | MR | Zbl
[31] F. Hecht, O. Pironneau, A. Le Hyaric, K. Ohtsuka, Freefem++, http://www.freefem.org/ff++
[32] M. Gunzburger, R. Nicolaides, Incompressible Computational Fluid Dynamics, Cambridge University Press, Cambridge, 1993 | MR | Zbl
[33] K. Lipnikov, D. Vassilev, I. Yotov, “Discontinuous Galerkin and mimetic finite difference methods for coupled Stokes–Darcy flows on polygonal and polyhedral grids”, Numer. Math., 126 (2014), 321–360 | DOI | MR | Zbl
[34] M. Mu, J. Xu, “A two-grid method of a mixed Stokes–Darcy model for coupling fluid flow with porous media flow”, SIAM J. Numer. Anal., 45 (2007), 1801–1813 | DOI | MR | Zbl
[35] M. Mu, X. Zhu, “Decoupled schemes for a non-stationary mixed Stokes–Darcy model”, Math. Comput., 79 (2010), 707–731 | MR | Zbl
[36] L. E. Payne, B. Straughan, “Analysis of the boundary condition at the interface between a viscous fluid and a porous medium and related modelling questions”, J. Math. Pures Appl., 77 (1998), 317–354 | DOI | MR | Zbl
[37] J. W. Pearson, J. Pestana, D. J. Silvester, “Refined saddle-point preconditioners for discretized Stokes problems”, Numer. Math., 138 (2018), 331–363 | DOI | MR | Zbl
[38] J. Roberts, J. M. Thomas, “Mixed and Hybrid methods”, Handbook of Numerical Analysis, Part I, v. II, Finite Element Methods, eds. P. Ciarlet, J. Lions, North Holland, 1990, 523–639 | MR
[39] H. Rui, R. Zhang, “A unified stabilized mixed finite element method for coupling Stokes and Darcy flows”, Comput. Methods Appl. Mech. Eng., 198 (2009), 2692–2699 | DOI | MR | Zbl
[40] P. Saffman, “On the boundary condition at the surface of a porous medium”, Stud. Appl. Math., 50 (1971), 93–101 | DOI | Zbl
[41] L. Shan, H. Zheng, “Partitioned time stepping method for fully evolutionary Stokes–Darcy flow with Beavers–Joseph interface conditions”, SIAM J. Numer. Anal., 51 (2013), 813–839 | DOI | MR | Zbl
[42] J. M. Urquiza, D. N'Dri, A. Garon, M. C. Delfour, “Coupling Stokes and Darcy equations”, Appl. Numer. Math., 58 (2008), 525–538 | DOI | MR | Zbl
[43] L. Zuo, Y. Hou, “A decoupling two-grid algorithm for the mixed Stokes–Darcy model with the Beavers–Joseph interface condition”, Numer. Methods Partial Differential Equations, 30 (2014), 1066–1082 | DOI | MR | Zbl
[44] L. Zuo, Y. Hou, “A two-grid decoupling method for the mixed Stokes–Darcy model”, J. Comput. Appl. Math., 275 (2015), 139–147 | DOI | MR | Zbl
[45] L. Zuo, Y. Hou, “Numerical analysis for the mixed Navier–Stokes and Darcy problem with the Beavers–Joseph interface condition”, Numer. Methods Partial Differential Equations, 31 (2015), 1009–1030 | DOI | MR | Zbl