Finite element method for the Stokes–Darcy problem with a new boundary condition
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 2, pp. 165-181

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers numerical methods for approaching and simulate the Stokes–Darcy problem, with a new boundary condition. We study herein a robust stabilized fully mixed discretization technique, this method ensures the stability of the finite element scheme and does not use any Lagrange multipliers to introduce a stabilization term in the temporal Stokes–Darcy problem discretization. The well-posedness of the finite element scheme and its convergence analysis are also derived. Finally, the efficiency and accuracy of the numerical methods are illustrated by different numerical tests
@article{SJVM_2020_23_2_a5,
     author = {O. El Moutea and H. El Amri and A. El Akkad},
     title = {Finite element method for the {Stokes{\textendash}Darcy} problem with a new boundary condition},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {165--181},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_2_a5/}
}
TY  - JOUR
AU  - O. El Moutea
AU  - H. El Amri
AU  - A. El Akkad
TI  - Finite element method for the Stokes–Darcy problem with a new boundary condition
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2020
SP  - 165
EP  - 181
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2020_23_2_a5/
LA  - ru
ID  - SJVM_2020_23_2_a5
ER  - 
%0 Journal Article
%A O. El Moutea
%A H. El Amri
%A A. El Akkad
%T Finite element method for the Stokes–Darcy problem with a new boundary condition
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2020
%P 165-181
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2020_23_2_a5/
%G ru
%F SJVM_2020_23_2_a5
O. El Moutea; H. El Amri; A. El Akkad. Finite element method for the Stokes–Darcy problem with a new boundary condition. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 2, pp. 165-181. http://geodesic.mathdoc.fr/item/SJVM_2020_23_2_a5/