Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2020_23_2_a3, author = {I. M. Kulikov}, title = {The use of the piecewise parabolic method on a local stencil for}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {143--154}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_2_a3/} }
I. M. Kulikov. The use of the piecewise parabolic method on a local stencil for. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 2, pp. 143-154. http://geodesic.mathdoc.fr/item/SJVM_2020_23_2_a3/
[1] J. M. Marti, E. Muller, “Numerical hydrodynamics in special relativity”, Living Reviews Relativity, 6 (2003), 7 | DOI | MR
[2] K. Wu, H. Tang, “Physical-constraints-preserving central discontinuous Galerkin methods for special relativistic hydrodynamics with a general equation of state”, The Astrophysical J. Supplement Series, 228:1 (2016), 3 | DOI | MR
[3] O. Zanotti, M. Dumbser, “A high order special relativistic hydrodynamic and magnetohydrodynamic code with space-time adaptive mesh refinement”, Computer Physics Communications, 188 (2015), 110–127 | DOI | MR | Zbl
[4] P. Collela, P. R. Woodward, “The piecewise parabolic method (PPM) Gas-Dynamical simulations”, J. of Computational Physics, 54 (1984), 174–201 | DOI | MR
[5] M. Popov, S. Ustyugov, “Piecewise parabolic method on local stencil for gasdynamic simulations”, Computational Mathematics and Mathematical Physics, 47:12 (2007), 1970–1989 | DOI | MR
[6] M. Popov, S. Ustyugov, “Piecewise parabolic method on a local stencil for ideal magnetohydrodynamics”, Computational Mathematics and Mathematical Physics, 48:3 (2008), 477–499 | DOI | MR | Zbl
[7] I. Kulikov, E. Vorobyov, “Using the PPML approach for constructing a low-dissipation, operator-splitting scheme for numerical simulations of hydrodynamic flows”, J. of Computational Physics, 317:C (2016), 318–346 | DOI | MR | Zbl
[8] F. Lora-Clavijo, A. Cruz-Osorio, F. Guzman, “CAFE: a new relativistic MHD code”, The Astrophysical J. Supplement Series, 218:2 (2015), 24 | DOI
[9] J. Stone, T. A. Gardiner, P. Teuben et al., “Athena: a new Code for astrophysical MHD”, The Astrophysical J. Supplement Series, 178 (2008), 137–177 | DOI
[10] W. Zhang, A. MacFadyen, “RAM: a relativistic adaptive mesh refinement hydrodynamics code”, The Astrophysical J. Supplement Series, 164:1 (2006), 255–279 | DOI
[11] A. Mignone, G. Bodo, S. Massaglia et al, “PLUTO: a numerical code for computational astrophysics”, The Astrophysical J. Supplement Series, 170 (2007), 228–242 | DOI
[12] L. D. Landau, E. M. Lifshits, Teoriya polya, Izd. 8-e, ster., Fizmatlit, M., 2001 | MR
[13] J. Nunez-de la Rosa, C. D. Munz, “XTROEM-FV: a new code for computational astrophysics based on very high order finite-volume methods II. Relativistic hydro- and magnetohydrodynamics”, Monthly Notices of the Royal Astronomical Society, 460:1 (2016), 535–559 | DOI
[14] A. Lamberts, S. Fromang, G. Dubus, R. Teyssier, “Simulating gamma-ray binaries with a relativistic extension of RAMSES”, Astronomy Astrophysics, 560 (2013), A79 | DOI
[15] S. A. E. G. Falle, S. S. Komissarov, “An upwind numerical scheme for relativistic hydrodynamics with a general equation of state”, Monthly Notices of the Royal Astronomical Society, 278:2 (1996), 586–602 | DOI
[16] F. D. Lora-Clavijo, J. P. Cruz-Perez, F. Siddhartha Guzman, J. A. Gonzalez, “Exact solution of the 1D Riemann problem in Newtonian and relativistic hydrodynamics”, Revista Mexicana de Fisica E, 59 (2013), 28–50 | MR