Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2020_23_1_a6, author = {V. I. Paasonen}, title = {Classification of difference schemes of the maximum possible accuracy on extended symmetric stencils for the {Schr\"odinger} equation and the heat transfer equation}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {99--114}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a6/} }
TY - JOUR AU - V. I. Paasonen TI - Classification of difference schemes of the maximum possible accuracy on extended symmetric stencils for the Schr\"odinger equation and the heat transfer equation JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2020 SP - 99 EP - 114 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a6/ LA - ru ID - SJVM_2020_23_1_a6 ER -
%0 Journal Article %A V. I. Paasonen %T Classification of difference schemes of the maximum possible accuracy on extended symmetric stencils for the Schr\"odinger equation and the heat transfer equation %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2020 %P 99-114 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a6/ %G ru %F SJVM_2020_23_1_a6
V. I. Paasonen. Classification of difference schemes of the maximum possible accuracy on extended symmetric stencils for the Schr\"odinger equation and the heat transfer equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 1, pp. 99-114. http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a6/
[1] N. N. Akhmediev, V. V. Afanasiev, “Singularities and special soliton solutions of the cubicquintic complex Ginsburg-Landau equation”, Physical Review E, 53:1 (1996), 1190–1201 | DOI | MR
[2] Yu. S. Kivshar', G. P. Agraval, Opticheskie solitony. Ot volokonnyh svetovodov k fotonnym kristallam, Fizmatlit, M., 2005
[3] S. Lu, Q. Lu, E. H. Twizell, “Fourier spectral approximation to long-time behaviour of the derivative three-dimensional Ginzburg-Landau equation”, J. Comput. Appl. Math., 198:1 (2007), 167–186 | DOI | MR | Zbl
[4] S. S. Xie, G. X. Li, S. Yi, “Compact finite difference schemes with high accuracy for onedimensional nonlinear Schrödinger equation”, Computer Methods in Applied Mechanics and Engineering, 198 (2009), 1052–1060 | DOI | MR | Zbl
[5] V. I. Paasonen, M. P. Fedoruk, “Kompaktnaya dissipativnaya skhema dlya nelinejnogo uravneniya Shredingera”, Vychislitel'nye tekhnologii, 16:6 (2011), 68–73
[6] V. I. Paasonen, M. P. Fedoruk, “Kompaktnaya bezyteracionnaya skhema s iskusstvennoj dissipaciej dlya nelinejnogo uravneniya Shredingera”, Vychislitel'nye tekhnologii, 17:3 (2012), 83–90
[7] V. I. Paasonen, M. P. Fedoruk, “O povyshenii poryadka tochnosti po evolyucionnoj peremennoj kompaktnyh raznostnyh skhem, approksimiruyuschih uravneniya nelinejnoj volokonnoj optiki”, Vychislitel'nye tekhnologii, 22:6 (2017), 57–63
[8] V. V. Ostapenko, “O postroenii kompaktnyh raznostnyh skhem”, DAN, 441:5 (2011), 588–592 | Zbl
[9] V. V. Ostapenko, “O kompaktnyh approksimaciyah divergentnyh differencial'nyh uravnenij”, Sib. zhurn. vychisl. matematiki, 15:3 (2012), 293–306 | MR | Zbl
[10] Sh. E. Mikeladze, “O chislennom integrirovanii uravnenij ellipticheskogo i parabolicheskogo tipov”, Izvestiya AN SSSR. Seriya matem., 5:1 (1941), 57–74 | MR
[11] T. Wang, Convergence of an eighth-order compact difference scheme for the nonlinear Shrödinger equation, Advances in Numerical Analysis, 2012 | DOI | MR