Classification of difference schemes of the maximum possible accuracy on extended symmetric stencils for the Schr\"odinger equation and the heat transfer equation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 1, pp. 99-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study all possible symmetric two-level difference schemes on arbitrary extended stencils for the Schrödinger equation and for the heat conductivity equation. We find the coefficients of the schemes from the conditions under which a maximum possible order of approximation on the main variable is attained. From a set of maximally exact schemes, a class of absolutely stable schemes is isolated. To investigate the stability of the schemes, the Neumann criterion is numerically and analytically verified. It is proved that the property of schemes to be absolutely stable or unstable significantly depends on the order of approximation on the evolution variable. As a result of the classification it was possible to construct absolutely stable schemes up to the tenth order of accuracy on the main variable.
@article{SJVM_2020_23_1_a6,
     author = {V. I. Paasonen},
     title = {Classification of difference schemes of the maximum possible accuracy on extended symmetric stencils for the {Schr\"odinger} equation and the heat transfer equation},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {99--114},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a6/}
}
TY  - JOUR
AU  - V. I. Paasonen
TI  - Classification of difference schemes of the maximum possible accuracy on extended symmetric stencils for the Schr\"odinger equation and the heat transfer equation
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2020
SP  - 99
EP  - 114
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a6/
LA  - ru
ID  - SJVM_2020_23_1_a6
ER  - 
%0 Journal Article
%A V. I. Paasonen
%T Classification of difference schemes of the maximum possible accuracy on extended symmetric stencils for the Schr\"odinger equation and the heat transfer equation
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2020
%P 99-114
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a6/
%G ru
%F SJVM_2020_23_1_a6
V. I. Paasonen. Classification of difference schemes of the maximum possible accuracy on extended symmetric stencils for the Schr\"odinger equation and the heat transfer equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 1, pp. 99-114. http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a6/

[1] N. N. Akhmediev, V. V. Afanasiev, “Singularities and special soliton solutions of the cubicquintic complex Ginsburg-Landau equation”, Physical Review E, 53:1 (1996), 1190–1201 | DOI | MR

[2] Yu. S. Kivshar', G. P. Agraval, Opticheskie solitony. Ot volokonnyh svetovodov k fotonnym kristallam, Fizmatlit, M., 2005

[3] S. Lu, Q. Lu, E. H. Twizell, “Fourier spectral approximation to long-time behaviour of the derivative three-dimensional Ginzburg-Landau equation”, J. Comput. Appl. Math., 198:1 (2007), 167–186 | DOI | MR | Zbl

[4] S. S. Xie, G. X. Li, S. Yi, “Compact finite difference schemes with high accuracy for onedimensional nonlinear Schrödinger equation”, Computer Methods in Applied Mechanics and Engineering, 198 (2009), 1052–1060 | DOI | MR | Zbl

[5] V. I. Paasonen, M. P. Fedoruk, “Kompaktnaya dissipativnaya skhema dlya nelinejnogo uravneniya Shredingera”, Vychislitel'nye tekhnologii, 16:6 (2011), 68–73

[6] V. I. Paasonen, M. P. Fedoruk, “Kompaktnaya bezyteracionnaya skhema s iskusstvennoj dissipaciej dlya nelinejnogo uravneniya Shredingera”, Vychislitel'nye tekhnologii, 17:3 (2012), 83–90

[7] V. I. Paasonen, M. P. Fedoruk, “O povyshenii poryadka tochnosti po evolyucionnoj peremennoj kompaktnyh raznostnyh skhem, approksimiruyuschih uravneniya nelinejnoj volokonnoj optiki”, Vychislitel'nye tekhnologii, 22:6 (2017), 57–63

[8] V. V. Ostapenko, “O postroenii kompaktnyh raznostnyh skhem”, DAN, 441:5 (2011), 588–592 | Zbl

[9] V. V. Ostapenko, “O kompaktnyh approksimaciyah divergentnyh differencial'nyh uravnenij”, Sib. zhurn. vychisl. matematiki, 15:3 (2012), 293–306 | MR | Zbl

[10] Sh. E. Mikeladze, “O chislennom integrirovanii uravnenij ellipticheskogo i parabolicheskogo tipov”, Izvestiya AN SSSR. Seriya matem., 5:1 (1941), 57–74 | MR

[11] T. Wang, Convergence of an eighth-order compact difference scheme for the nonlinear Shrödinger equation, Advances in Numerical Analysis, 2012 | DOI | MR