Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2020_23_1_a5, author = {R. K. Mohanty and S. Sharma}, title = {Fourth-order numerical scheme based on half-step nonpolynomial spline approximations for {1D} quasi-linear parabolic equations}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {83--97}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a5/} }
TY - JOUR AU - R. K. Mohanty AU - S. Sharma TI - Fourth-order numerical scheme based on half-step nonpolynomial spline approximations for 1D quasi-linear parabolic equations JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2020 SP - 83 EP - 97 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a5/ LA - ru ID - SJVM_2020_23_1_a5 ER -
%0 Journal Article %A R. K. Mohanty %A S. Sharma %T Fourth-order numerical scheme based on half-step nonpolynomial spline approximations for 1D quasi-linear parabolic equations %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2020 %P 83-97 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a5/ %G ru %F SJVM_2020_23_1_a5
R. K. Mohanty; S. Sharma. Fourth-order numerical scheme based on half-step nonpolynomial spline approximations for 1D quasi-linear parabolic equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 1, pp. 83-97. http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a5/
[1] A. G. Bratsos, “A fourth order improved numerical scheme for the generalized Burgers-Huxley equation”, Am. J. Comput. Math., 1 (2011), 152–158 | DOI | MR
[2] J. M. Burgers, “A Mathematical model illustrating the theory of turbulence”, Adv. Appl. Mech., 1, 171–199 | DOI | MR
[3] I. Celik, “Chebyshev wavelet collocation method for solving generalized Burgers-Huxley equation”, Math. Methods Appl. Sci., 39:3 (2016), 366–377 | DOI | MR | Zbl
[4] M. Dehghan, J. M. Heris, A. Saadatmandi, “Application of semi-analytic methods for the Fitzhugh-Nagumo equation, which models the transmission of nerve impulses”, Math. Methods Appl. Sci., 33:11 (2010), 1384–1398 | MR | Zbl
[5] Y. Duan, L. Kong, R. Zhang, “A lattice Boltzmann model for the generalized Burgers-Huxley equation”, Phys. A, 391:3 (2012), 625–632 | DOI | MR
[6] R. A. Fisher, “The wave of advance of advantageous genes”, Ann. Hum. Genetic, 7 (1937), 353–369
[7] L. A. Hageman, D. M. Young, Applied Iterative Methods, Dover Publ., New York, 2004 | MR | Zbl
[8] M. K. Jain, R. K. Jain, R. K. Mohanty, “High order difference methods for system of 1-D nonlinear parabolic partial differential equations”, Int. J. Comput. Math., 37:2 (1990), 105–112 | DOI | MR | Zbl
[9] C. T. Kelly, Iterative Methods for Linear and Nonlinear Equations, SIAM Publications, Philadelphia, 1995 | MR
[10] A. N. Kolmogorov, I. G. Petrovskii, N. S. Piskunov, “A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem”, Moscow University Mathematics Bulletin, 1 (1937), 1–26
[11] B. I. Kvasov, P. Sattayatham, “GB-splines of arbitrary order”, J. Comput. Appl. Math., 104 (1999), 63–88 | DOI | MR | Zbl
[12] A. A. Makarov, “Construction of splines of maximal smoothness”, J. Math. Sci., 178 (2011), 589–604 | DOI | MR | Zbl
[13] R. C. Mittal, A. Tripathi, “Numerical solutions of generalized Burgers-Fisher and generalized Burgers-Huxley equations using collocation of cubic B-splines”, Int. J. Comput. Math., 92 (2015), 1053–1077 | DOI | MR | Zbl
[14] R. Mohammadi, “Spline solution of the generalized Burgers'-Fisher equation”, Appl. Anal., 91:12 (2011), 2189–2215 | DOI | MR
[15] R. Mohammadi, “B-spline collocation algorithm for numerical solution of the generalized Burger's-Huxley equation”, Numer. Meth. Partial Diff. Eqn., 29:4 (2013), 1173–1191 | DOI | MR | Zbl
[16] R. K. Mohanty, “An implicit high accuracy variable mesh scheme for 1-D non-linear singular parabolic partial differential equations”, Appl. Math. Comput., 186:1 (2007), 219–229 | MR | Zbl
[17] R. K. Mohanty, M. K. Jain, “High-accuracy cubic spline alternating group explicit methods for 1D quasi-linear parabolic equations”, Int. J. Comput. Math., 86:9 (2009), 1556–1571 | DOI | MR | Zbl
[18] R. K. Mohanty, “A variable mesh C-SPLAGE method of accuracy $O(k^2h^{-1}_l + kh_l + h_l^3)$ for 1D nonlinear parabolic equations”, Appl. Math. Comput., 213:1 (2009), 79–91 | MR | Zbl
[19] R. K. Mohanty, S. Sharma, “High-accuracy quasi-variable mesh method for the system of 1D quasi-linear parabolic partial differential equations based on off-step spline in compression approximations”, Advances in Difference Equations, 212 (2017) | DOI | MR | Zbl
[20] R. K. Mohanty, S. Sharma, S. Singh, “A new two-level implicit scheme for the system of 1D quasi-linear parabolic partial differential equations using spline in compression approximations”, Differ. Equ. Dyn. Syst., 27 (2019) | DOI | MR
[21] R. K. Mohanty, S. Sharma, S. Singh, “A new two-level implicit scheme of order two in time and four in space based on half-step spline in compression approximations for unsteady 1D quasi-linear biharmonic equations”, Advances in Difference Equations, 378 (2018) | DOI | MR | Zbl
[22] J. Rashidinia, R. Mohammadi, “Non-polynomial cubic spline methods for the solution of parabolic equations”, Int. J. Comput. Math., 85:5 (2008), 843–850 | DOI | MR | Zbl
[23] J. Satsuma, “Exact solutions of Burgers' equation with reaction terms”, Topics in Soliton Theory and Exactly Solvable Nonlinear Equations, World Sci. Pub., Singapore, 1986, 255–262 | MR
[24] M. Ablowitz, B. Fuchssteiner, M. Kruskal, “Topics in Soliton Theory and Exactly Solvable Nonlinear Equations”, Proc. Conf. on Nonlinear Evolution Equations, Solitons and the Inverse Scattering Transform, World Scientific, Singapore, 1987 | DOI | MR | Zbl
[25] D. G. Schweikert, “An interpolation curve using a spline in tension”, J. Math. Phys., 45:1–4 (1966), 312–317 | DOI | MR | Zbl
[26] A. C. Scott, Neurophysics, Wiley, New York, 1977
[27] J. Talwar, R. K. Mohanty, S. Singh, “A new spline in compression approximation for one space dimensional quasilinear parabolic equations on a variable mesh”, Appl. Math. Comput., 260:C (2015), 82–96 | MR | Zbl
[28] J. Talwar, R. K. Mohanty, S. Singh, “A new algorithm based on spline in tension approximation for 1D quasi-linear parabolic equations on a variable mesh”, Int. J. Comput. Math., 93:10 (2016), 1771–1786 | DOI | MR | Zbl
[29] X. Y. Wang, Z. S. Zhu, Y. K. Lu, “Solitary wave solutions of the generalized Burgers-Huxley equation”, J. Phys. A: Math. Gen., 23:3 (1990), 271–274 | DOI | MR | Zbl
[30] X. Wang, “Nerve propagation and wall in liquid crystals”, Phys. Lett., 112A:8 (1985), 402–406 | DOI
[31] G. B. Whitham, Linear, Nonlinear Waves, Wiley and Sons, New York, 1974 | MR | Zbl
[32] R. Zhang, X. Yu, G. Zhao, “The local discontinuous Galerkin method for Burger's-Huxley and Burger's-Fisher equations”, Appl. Math. Comput., 218 (2012), 8773–8778 | MR | Zbl
[33] C. G. Zhu, W. S. Kang, “Numerical solution of Burgers-Fisher equation by cubic B-spline quasi-interpolation”, Appl. Math. Comput., 216 (2010), 2679–2686 | MR | Zbl