Fourth-order numerical scheme based on half-step nonpolynomial spline approximations for 1D quasi-linear parabolic equations
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 1, pp. 83-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we discuss a fourth-order accurate scheme based on non-polynomial spline in tension approximations for the solution of quasi-linear parabolic partial differential equations. The proposed numerical method requires only two half-step points and a central point on a uniform mesh in the spatial direction. This method is derived directly from a continuity condition of the first-order derivative of a non-polynomial tension spline function. The stability of the scheme is discussed using a model linear PDE. The method is directly applicable to solving singular parabolic problems in polar systems. The proposed method is tested on the generalized Burgers–Huxley equation, the generalized Burgers–Fisher equation, and Burgers' equations in polar coordinates.
@article{SJVM_2020_23_1_a5,
     author = {R. K. Mohanty and S. Sharma},
     title = {Fourth-order numerical scheme based on half-step nonpolynomial spline approximations for {1D} quasi-linear parabolic equations},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {83--97},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a5/}
}
TY  - JOUR
AU  - R. K. Mohanty
AU  - S. Sharma
TI  - Fourth-order numerical scheme based on half-step nonpolynomial spline approximations for 1D quasi-linear parabolic equations
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2020
SP  - 83
EP  - 97
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a5/
LA  - ru
ID  - SJVM_2020_23_1_a5
ER  - 
%0 Journal Article
%A R. K. Mohanty
%A S. Sharma
%T Fourth-order numerical scheme based on half-step nonpolynomial spline approximations for 1D quasi-linear parabolic equations
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2020
%P 83-97
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a5/
%G ru
%F SJVM_2020_23_1_a5
R. K. Mohanty; S. Sharma. Fourth-order numerical scheme based on half-step nonpolynomial spline approximations for 1D quasi-linear parabolic equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 1, pp. 83-97. http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a5/

[1] A. G. Bratsos, “A fourth order improved numerical scheme for the generalized Burgers-Huxley equation”, Am. J. Comput. Math., 1 (2011), 152–158 | DOI | MR

[2] J. M. Burgers, “A Mathematical model illustrating the theory of turbulence”, Adv. Appl. Mech., 1, 171–199 | DOI | MR

[3] I. Celik, “Chebyshev wavelet collocation method for solving generalized Burgers-Huxley equation”, Math. Methods Appl. Sci., 39:3 (2016), 366–377 | DOI | MR | Zbl

[4] M. Dehghan, J. M. Heris, A. Saadatmandi, “Application of semi-analytic methods for the Fitzhugh-Nagumo equation, which models the transmission of nerve impulses”, Math. Methods Appl. Sci., 33:11 (2010), 1384–1398 | MR | Zbl

[5] Y. Duan, L. Kong, R. Zhang, “A lattice Boltzmann model for the generalized Burgers-Huxley equation”, Phys. A, 391:3 (2012), 625–632 | DOI | MR

[6] R. A. Fisher, “The wave of advance of advantageous genes”, Ann. Hum. Genetic, 7 (1937), 353–369

[7] L. A. Hageman, D. M. Young, Applied Iterative Methods, Dover Publ., New York, 2004 | MR | Zbl

[8] M. K. Jain, R. K. Jain, R. K. Mohanty, “High order difference methods for system of 1-D nonlinear parabolic partial differential equations”, Int. J. Comput. Math., 37:2 (1990), 105–112 | DOI | MR | Zbl

[9] C. T. Kelly, Iterative Methods for Linear and Nonlinear Equations, SIAM Publications, Philadelphia, 1995 | MR

[10] A. N. Kolmogorov, I. G. Petrovskii, N. S. Piskunov, “A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem”, Moscow University Mathematics Bulletin, 1 (1937), 1–26

[11] B. I. Kvasov, P. Sattayatham, “GB-splines of arbitrary order”, J. Comput. Appl. Math., 104 (1999), 63–88 | DOI | MR | Zbl

[12] A. A. Makarov, “Construction of splines of maximal smoothness”, J. Math. Sci., 178 (2011), 589–604 | DOI | MR | Zbl

[13] R. C. Mittal, A. Tripathi, “Numerical solutions of generalized Burgers-Fisher and generalized Burgers-Huxley equations using collocation of cubic B-splines”, Int. J. Comput. Math., 92 (2015), 1053–1077 | DOI | MR | Zbl

[14] R. Mohammadi, “Spline solution of the generalized Burgers'-Fisher equation”, Appl. Anal., 91:12 (2011), 2189–2215 | DOI | MR

[15] R. Mohammadi, “B-spline collocation algorithm for numerical solution of the generalized Burger's-Huxley equation”, Numer. Meth. Partial Diff. Eqn., 29:4 (2013), 1173–1191 | DOI | MR | Zbl

[16] R. K. Mohanty, “An implicit high accuracy variable mesh scheme for 1-D non-linear singular parabolic partial differential equations”, Appl. Math. Comput., 186:1 (2007), 219–229 | MR | Zbl

[17] R. K. Mohanty, M. K. Jain, “High-accuracy cubic spline alternating group explicit methods for 1D quasi-linear parabolic equations”, Int. J. Comput. Math., 86:9 (2009), 1556–1571 | DOI | MR | Zbl

[18] R. K. Mohanty, “A variable mesh C-SPLAGE method of accuracy $O(k^2h^{-1}_l + kh_l + h_l^3)$ for 1D nonlinear parabolic equations”, Appl. Math. Comput., 213:1 (2009), 79–91 | MR | Zbl

[19] R. K. Mohanty, S. Sharma, “High-accuracy quasi-variable mesh method for the system of 1D quasi-linear parabolic partial differential equations based on off-step spline in compression approximations”, Advances in Difference Equations, 212 (2017) | DOI | MR | Zbl

[20] R. K. Mohanty, S. Sharma, S. Singh, “A new two-level implicit scheme for the system of 1D quasi-linear parabolic partial differential equations using spline in compression approximations”, Differ. Equ. Dyn. Syst., 27 (2019) | DOI | MR

[21] R. K. Mohanty, S. Sharma, S. Singh, “A new two-level implicit scheme of order two in time and four in space based on half-step spline in compression approximations for unsteady 1D quasi-linear biharmonic equations”, Advances in Difference Equations, 378 (2018) | DOI | MR | Zbl

[22] J. Rashidinia, R. Mohammadi, “Non-polynomial cubic spline methods for the solution of parabolic equations”, Int. J. Comput. Math., 85:5 (2008), 843–850 | DOI | MR | Zbl

[23] J. Satsuma, “Exact solutions of Burgers' equation with reaction terms”, Topics in Soliton Theory and Exactly Solvable Nonlinear Equations, World Sci. Pub., Singapore, 1986, 255–262 | MR

[24] M. Ablowitz, B. Fuchssteiner, M. Kruskal, “Topics in Soliton Theory and Exactly Solvable Nonlinear Equations”, Proc. Conf. on Nonlinear Evolution Equations, Solitons and the Inverse Scattering Transform, World Scientific, Singapore, 1987 | DOI | MR | Zbl

[25] D. G. Schweikert, “An interpolation curve using a spline in tension”, J. Math. Phys., 45:1–4 (1966), 312–317 | DOI | MR | Zbl

[26] A. C. Scott, Neurophysics, Wiley, New York, 1977

[27] J. Talwar, R. K. Mohanty, S. Singh, “A new spline in compression approximation for one space dimensional quasilinear parabolic equations on a variable mesh”, Appl. Math. Comput., 260:C (2015), 82–96 | MR | Zbl

[28] J. Talwar, R. K. Mohanty, S. Singh, “A new algorithm based on spline in tension approximation for 1D quasi-linear parabolic equations on a variable mesh”, Int. J. Comput. Math., 93:10 (2016), 1771–1786 | DOI | MR | Zbl

[29] X. Y. Wang, Z. S. Zhu, Y. K. Lu, “Solitary wave solutions of the generalized Burgers-Huxley equation”, J. Phys. A: Math. Gen., 23:3 (1990), 271–274 | DOI | MR | Zbl

[30] X. Wang, “Nerve propagation and wall in liquid crystals”, Phys. Lett., 112A:8 (1985), 402–406 | DOI

[31] G. B. Whitham, Linear, Nonlinear Waves, Wiley and Sons, New York, 1974 | MR | Zbl

[32] R. Zhang, X. Yu, G. Zhao, “The local discontinuous Galerkin method for Burger's-Huxley and Burger's-Fisher equations”, Appl. Math. Comput., 218 (2012), 8773–8778 | MR | Zbl

[33] C. G. Zhu, W. S. Kang, “Numerical solution of Burgers-Fisher equation by cubic B-spline quasi-interpolation”, Appl. Math. Comput., 216 (2010), 2679–2686 | MR | Zbl