Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2020_23_1_a4, author = {A. F. Mastryukov}, title = {The finite-difference scheme for one-dimensional {Maxwell's} equations}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {69--82}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a4/} }
A. F. Mastryukov. The finite-difference scheme for one-dimensional Maxwell's equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 1, pp. 69-82. http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a4/
[1] T. Bergmann, J. O. A. Robertsson, K. Holliger, “Finite-difference modeling of electromagnetic wave propagation in dispersive and attenuating media”, Geophysics, 63 (1998), 856–867 | DOI
[2] T. Bergmann, J. O. Blanch, J. O. A. Robertsson, K. Holliger, “A simplified Lax-Wendroff correction for staggered-grid FDTD modeling of electromagnetic wave propagation in frequencydependent media”, Geophysics, 64 (1999), 1369–1377 | DOI
[3] R. Luebbers, F. P. Hansberger, “FDTD for Nth-order dispersive media”, IEEE Transactions on Antennas and Propagation, 40 (1992), 1297–1301 | DOI
[4] G. Turner, A. F. Siggins, “Constant Q attenuation of subsurface radar pulses”, Geophysics, 59 (1994), 1192–1200 | DOI
[5] A.G. Tarhov, Elektrorazvedka. Spravochnik geofizika, Nedra, M., 1980
[6] Golub Dzh, CH. Van Loun, Matrichnye vychisleniya, Mir, M., 1999
[7] C. H. Jo, C. Shin, H. S. Suh, “An optimal 9-point, finite-difference, frequency-space, 2-d scalar wave extrapolator”, Geophysics, 61 (1996), 529–537 | DOI
[8] J. B. Chen, “An average derivative optimal scheme for frequency-domain scalar wave equation”, Geophysics, 77:6 (2012), T201–T210 | DOI
[9] C. K. Tam, J. C. Webb, “Dispersion-relation-preserving finite difference schemes for computational acoustics”, J. of Computational Physics, 107 (1993), 262–281 | DOI | MR | Zbl
[10] A. F. Mastryukov, “Optimal'nye raznostnye skhemy dlya volnovogo uravneniya”, Sib. zhurn. vychisl. matematiki, 19:4 (2016), 385–399 | MR | Zbl
[11] A. F. Mastryukov, B. G. Mikhailenko, “Optimal'nye raznostnye skhemy dlya uravnenii Maksvella pri reshenii pryamyh zadach elektromagnitnyh zondirovanii”, Geologiya i geofizika, 2015, no. 9, 1713–1722
[12] A. F. Mastryukov, “Reshenie obratnoi zadachi dlya uravneniya diffuzii na osnove spektral'nogo preobrazovaniya Lagerra”, Matematicheskoe modelirovanie, 19:9 (2007), 15–26 | MR | Zbl
[13] A. N. Tihonov, V. Ya. Arsenin, Metody resheniya nekorrektnyh zadach, Nauka, M., 1979
[14] R. P. Fedorenko, Priblizhennoe reshenie zadach optimal'nogo upravleniya, Nauka, M., 1978
[15] F. P. Vasil'ev, Chislennye metody resheniya ekstremal'nyh zadach, Nauka, M., 1980
[16] L. D. Landau, E. M. Lifshic, Elektrodinamika sploshnyh sred, Nauka, M., 1982 | MR
[17] M. Abramovic, I. Stigan, Spravochnik po special'nym funkciyam, Nauka, M., 1979
[18] M. Ghrist, B. Fornberg, T. A. Driscoll, “Staggered time integrator for wave equations”, SIAM J. Numer. Anal., 38:3 (2000), 718–741 | DOI | MR | Zbl
[19] Dzh. Demmel', Vychislitel'naya lineinaya algebra, Mir, M., 2001
[20] A. F. Mastryukov, “Opredelenie koefficienta diffuzii”, Matematicheskoe modelirovanie, 27:1 (2015), 16–32 | MR | Zbl