The finite-difference scheme for one-dimensional Maxwell's equations
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 1, pp. 69-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with a difference scheme of second order of approximation for one-dimensional Maxwell’s equations using the Laquerre transform. Supplementary parameters are introduced into this difference scheme. These parameters are obtained by minimizing the difference approximation error of the Helmholtz equation. The values of these optimal parameters are independent of the step size and the number of nodes in the difference scheme. It is shown that application of the Laguerre decomposition allows obtaining a higher accuracy of approximation of the equations in comparison with similar difference schemes when using the Fourier decomposition. The finite difference scheme of second order with parameters was compared to the difference scheme of fourth order in two cases. The use of an optimal difference scheme when solving the problem of electromagnetic impulse propagation in an inhomogeneous medium yields the accuracy of the solution compatible with that of the difference scheme of fourth order. When solving the inverse problem, the second order difference scheme makes possible to attain a higher accuracy of the solution as compared to the difference scheme of fourth order. In the considered problems, the application of the difference scheme of second order with supplementary parameters has decreased the calculation time of a problem by 20–25 percent as compared to the fourth order difference scheme.
@article{SJVM_2020_23_1_a4,
     author = {A. F. Mastryukov},
     title = {The finite-difference scheme for one-dimensional {Maxwell's} equations},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {69--82},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a4/}
}
TY  - JOUR
AU  - A. F. Mastryukov
TI  - The finite-difference scheme for one-dimensional Maxwell's equations
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2020
SP  - 69
EP  - 82
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a4/
LA  - ru
ID  - SJVM_2020_23_1_a4
ER  - 
%0 Journal Article
%A A. F. Mastryukov
%T The finite-difference scheme for one-dimensional Maxwell's equations
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2020
%P 69-82
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a4/
%G ru
%F SJVM_2020_23_1_a4
A. F. Mastryukov. The finite-difference scheme for one-dimensional Maxwell's equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 1, pp. 69-82. http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a4/

[1] T. Bergmann, J. O. A. Robertsson, K. Holliger, “Finite-difference modeling of electromagnetic wave propagation in dispersive and attenuating media”, Geophysics, 63 (1998), 856–867 | DOI

[2] T. Bergmann, J. O. Blanch, J. O. A. Robertsson, K. Holliger, “A simplified Lax-Wendroff correction for staggered-grid FDTD modeling of electromagnetic wave propagation in frequencydependent media”, Geophysics, 64 (1999), 1369–1377 | DOI

[3] R. Luebbers, F. P. Hansberger, “FDTD for Nth-order dispersive media”, IEEE Transactions on Antennas and Propagation, 40 (1992), 1297–1301 | DOI

[4] G. Turner, A. F. Siggins, “Constant Q attenuation of subsurface radar pulses”, Geophysics, 59 (1994), 1192–1200 | DOI

[5] A.G. Tarhov, Elektrorazvedka. Spravochnik geofizika, Nedra, M., 1980

[6] Golub Dzh, CH. Van Loun, Matrichnye vychisleniya, Mir, M., 1999

[7] C. H. Jo, C. Shin, H. S. Suh, “An optimal 9-point, finite-difference, frequency-space, 2-d scalar wave extrapolator”, Geophysics, 61 (1996), 529–537 | DOI

[8] J. B. Chen, “An average derivative optimal scheme for frequency-domain scalar wave equation”, Geophysics, 77:6 (2012), T201–T210 | DOI

[9] C. K. Tam, J. C. Webb, “Dispersion-relation-preserving finite difference schemes for computational acoustics”, J. of Computational Physics, 107 (1993), 262–281 | DOI | MR | Zbl

[10] A. F. Mastryukov, “Optimal'nye raznostnye skhemy dlya volnovogo uravneniya”, Sib. zhurn. vychisl. matematiki, 19:4 (2016), 385–399 | MR | Zbl

[11] A. F. Mastryukov, B. G. Mikhailenko, “Optimal'nye raznostnye skhemy dlya uravnenii Maksvella pri reshenii pryamyh zadach elektromagnitnyh zondirovanii”, Geologiya i geofizika, 2015, no. 9, 1713–1722

[12] A. F. Mastryukov, “Reshenie obratnoi zadachi dlya uravneniya diffuzii na osnove spektral'nogo preobrazovaniya Lagerra”, Matematicheskoe modelirovanie, 19:9 (2007), 15–26 | MR | Zbl

[13] A. N. Tihonov, V. Ya. Arsenin, Metody resheniya nekorrektnyh zadach, Nauka, M., 1979

[14] R. P. Fedorenko, Priblizhennoe reshenie zadach optimal'nogo upravleniya, Nauka, M., 1978

[15] F. P. Vasil'ev, Chislennye metody resheniya ekstremal'nyh zadach, Nauka, M., 1980

[16] L. D. Landau, E. M. Lifshic, Elektrodinamika sploshnyh sred, Nauka, M., 1982 | MR

[17] M. Abramovic, I. Stigan, Spravochnik po special'nym funkciyam, Nauka, M., 1979

[18] M. Ghrist, B. Fornberg, T. A. Driscoll, “Staggered time integrator for wave equations”, SIAM J. Numer. Anal., 38:3 (2000), 718–741 | DOI | MR | Zbl

[19] Dzh. Demmel', Vychislitel'naya lineinaya algebra, Mir, M., 2001

[20] A. F. Mastryukov, “Opredelenie koefficienta diffuzii”, Matematicheskoe modelirovanie, 27:1 (2015), 16–32 | MR | Zbl