Convergence of numerical spectral models of the sea surface undulation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 1, pp. 53-67
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper deals with the convergence of spectral and conditional spectral models that are used to simulate a stochastic structure of the sea surface undulation and rogue ocean waves. We study the convergence of spatial-temporal and spatial models.
@article{SJVM_2020_23_1_a3,
author = {K. V. Litvenko and S. M. Prigarin},
title = {Convergence of numerical spectral models of the sea surface undulation},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {53--67},
publisher = {mathdoc},
volume = {23},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a3/}
}
TY - JOUR AU - K. V. Litvenko AU - S. M. Prigarin TI - Convergence of numerical spectral models of the sea surface undulation JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2020 SP - 53 EP - 67 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a3/ LA - ru ID - SJVM_2020_23_1_a3 ER -
K. V. Litvenko; S. M. Prigarin. Convergence of numerical spectral models of the sea surface undulation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 1, pp. 53-67. http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a3/