Convergence of numerical spectral models of the sea surface undulation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 1, pp. 53-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the convergence of spectral and conditional spectral models that are used to simulate a stochastic structure of the sea surface undulation and rogue ocean waves. We study the convergence of spatial-temporal and spatial models.
@article{SJVM_2020_23_1_a3,
     author = {K. V. Litvenko and S. M. Prigarin},
     title = {Convergence of numerical spectral models of the sea surface undulation},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {53--67},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a3/}
}
TY  - JOUR
AU  - K. V. Litvenko
AU  - S. M. Prigarin
TI  - Convergence of numerical spectral models of the sea surface undulation
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2020
SP  - 53
EP  - 67
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a3/
LA  - ru
ID  - SJVM_2020_23_1_a3
ER  - 
%0 Journal Article
%A K. V. Litvenko
%A S. M. Prigarin
%T Convergence of numerical spectral models of the sea surface undulation
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2020
%P 53-67
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a3/
%G ru
%F SJVM_2020_23_1_a3
K. V. Litvenko; S. M. Prigarin. Convergence of numerical spectral models of the sea surface undulation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 1, pp. 53-67. http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a3/

[1] I. M. Davidan, L. I. Lopatuhin, V. A. Rozhkov, Vetrovoe volnenie kak veroyatnostnyi gidrodinamicheskii process, Gidrometeoizdat, L., 1978

[2] Yu. M. Krylov, Spektral'nye metody issledovaniya i rascheta vetrovyh voln, Gidrometeoizdat, L., 1966

[3] M. S. Longe-Higgins, “Statisticheskii analiz sluchaino dvizhuscheisya poverhnosti”, Vetrovye volny, Inostrannaya literatura, M., 1962, 112–230

[4] V. Pirson, G. Neiman, R. Dzheims, “Razvitie i prognoz vetrovyh voln”, Vetrovye volny, Inostrannaya literatura, M., 1962, 42–124

[5] P. E. Tovstik, T. M. Tovstik, V. A. Shekhovcov, “O vliyanii formy spektral'noi plotnosti sluchainogo volneniya na kolebaniya morskoi stacionarnoi platformy”, Vestnik SPbGU. Ser. 1, 2012, no. 2, 61–68

[6] S. M. Prigarin, K. V. Litvenko, “Conditional spectral models of extreme ocean waves”, Russ. J. of Numerical Analysis and Mathematical Modelling, 27:3 (2012), 289–302 | DOI | MR | Zbl

[7] S. R. Anvarov, S. M. Prigarin, “Numerical simulation of the spatio-temporal structure of the sea swell surface in optical problems”, Atmospheric and Oceanic Optics, 7:5 (1994), 361–364

[8] B. A. Kargin, U. G. Oppel, S. M. Prigarin, “Simulation of the undulated sea surface and study of its optical properties by Monte Carlo method”, Proc. SPIE, 3583, 1999, 316–324 | DOI

[9] B. A. Kargin, S. M. Prigarin, “Simulation of the sea undulation surface and study of its optical properties by Monte Carlo method”, Atmospheric and Oceanic Optics, 5:3 (1992), 186–190

[10] A. S. Shalygin, Yu. I. Palagin, Prikladnye metody statisticheskogo modelirovaniya, Mashinostroenie, L., 1986

[11] K. V. Litvenko, S. M. Prigarin, “Chislennye stohasticheskie modeli poverhnosti morskogo volneniya i gigantskih okeanicheskih voln”, Sib. zhurn. vychisl. matematiki, 17:4 (2014), 349–361 | MR | Zbl

[12] G. A. Mikhailov, “Chislennoe postroenie sluchainogo polya s zadannoi spektral'noi plotnost'yu”, Dokl. AN SSSR, 238:4 (1978), 793–795 | MR

[13] G. A. Mikhailov, “Priblizhennye modeli sluchainyh processov i polei”, Zhurn. vychisl. matematiki i mat. fiziki, 23:3 (1983), 558–566 | MR

[14] G. A. Mihailov, Optimizaciya vesovyh processov Monte-Karlo, Nauka, M., 1987

[15] S. M. Prigarin, Metody chislennogo modelirovaniya sluchainyh processov i polei, Izd-vo IVMiMG SO RAN, Novosibirsk, 2005

[16] A. V. Voitishek, “Randomizirovannaya chislennaya spektral'naya model' stacionarnoi sluchainoi funkcii”, Matematicheskie i imitacionnye modeli sistem, Izd-vo VC SO AN SSSR, Novosibirsk, 1983, 17–25

[17] O. A. Kurbanmuradov, Funkcional'naya skhodimost' monte-karlovskih approksimacii odnorodnyh gaussovskih sluchainyh polei, Preprint 999, RAN. Sib. otd-nie. VC, Novosibirsk, 1993

[18] S. M. Prigarin, Spectral Models of Random Fields in Monte Carlo Methods, VSP, Utrecht, 2001 | MR

[19] Yu. V. Prohorov, Yu. A. Rozanov, Teoriya veroyatnostei. Osnovnye ponyatiya, predel'nye teoremy, sluchainye processy, Nauka, M., 1973

[20] S. M. Prigarin, “Slabaya skhodimost' veroyatnostnyh mer v prostranstvah nepreryvno differenciruemyh funkcii”, Sib. mat. zhurnal., 34:1 (1993), 140–144 | MR | Zbl

[21] A. V. Ivanov, “O skhodimosti raspredelenii funkcionalov ot izmerimyh sluchainyh polei”, Ukrainskii mat. zhurnal, 32:1 (1980), 27–34 | MR | Zbl

[22] P. Billingsli, Skhodimost' veroyatnostnyh mer, Nauka, M., 1977

[23] S. M. Prigarin, “Conditional spectral models of Gaussian homogeneous fields”, Russ. J. Numer. Anal. and Math. Model., 13:1 (1998), 57–68 | DOI | MR

[24] S. M. Prigarin, K. V. Litvenko, “Numerical simulation of the sea surface and extreme ocean waves with stochastic spectral models”, Proc. of the AMSA-2011 Int. Workshop “Applied Methods of Statistical Analysis. Simulations and Statistical Inference”, Publishing house of NSTU, Novosibirsk, 2011, 394–402