A priori error estimates and superconvergence of splitting positive definite mixed finite element methods for pseudo-hyperbolic integro-differential optimal control problems
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 1, pp. 23-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss a priori error estimates and superconvergence of splitting positive definite mixed finite element methods for optimal control problems governed by pseudo-hyperbolic integro-differential equations. The state variables and co-state variables are approximated by the lowest order Raviart–Thomas mixed finite element functions, and the control variable is approximated by piecewise constant functions. First, we derive a priori error estimates both for the control variable, the state variables and the co-state variables. Second, we obtain a superconvergence result for the control variable.
@article{SJVM_2020_23_1_a1,
     author = {C. Xu},
     title = {A priori error estimates and superconvergence of splitting positive definite mixed finite element methods for pseudo-hyperbolic integro-differential optimal control problems},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {23--37},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a1/}
}
TY  - JOUR
AU  - C. Xu
TI  - A priori error estimates and superconvergence of splitting positive definite mixed finite element methods for pseudo-hyperbolic integro-differential optimal control problems
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2020
SP  - 23
EP  - 37
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a1/
LA  - ru
ID  - SJVM_2020_23_1_a1
ER  - 
%0 Journal Article
%A C. Xu
%T A priori error estimates and superconvergence of splitting positive definite mixed finite element methods for pseudo-hyperbolic integro-differential optimal control problems
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2020
%P 23-37
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a1/
%G ru
%F SJVM_2020_23_1_a1
C. Xu. A priori error estimates and superconvergence of splitting positive definite mixed finite element methods for pseudo-hyperbolic integro-differential optimal control problems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 1, pp. 23-37. http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a1/

[1] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991 | MR | Zbl

[2] H. Brunner, N. Yan, “Finite element methods for optimal control problems governed by integral equations and integro-differential equations”, Numer. Math., 101 (2005), 1–27 | DOI | MR | Zbl

[3] Y. Chen, “Superconvergence of quadratic optimal control problems by triangular mixed finite element elements”, Inter. J. Numer. Meths. Eng., 75:8 (2008), 881–898 | DOI | MR | Zbl

[4] Y. Chen, “Superconvergence of mixed finite element methods for optimal control problems”, Math. Comp., 77 (2008), 1269–1291 | DOI | MR | Zbl

[5] Y. Chen, Y. Dai, “Superconvergence for optimal control problems governed by semi-linear elliptic equations”, J. Sci. Comput., 39 (2009), 206–221 | DOI | MR | Zbl

[6] Y. Chen, Y. Huang, W. B. Liu, N. Yan, “Error estimates and superconvergence of mixed finite element methods for convex optimal control problems”, J. Sci. Comput., 42:3 (2010), 382–403 | DOI | MR | Zbl

[7] J. Douglas, J. E. Roberts, “Global estimates for mixed methods for second order elliptic equations”, Math. Comp., 44 (1985), 39–52 | DOI | MR | Zbl

[8] R. E. Ewing, M. M. Liu, J. Wang, “Superconvergence of mixed finite element approximations over quadrilaterals”, SIAM J. Numer. Anal., 36 (1999), 772–787 | DOI | MR

[9] H. Guo, H. Fu, J. Zhang, “A splitting positive definite mixed finite element method for elliptic optimal control problem”, Appl. Math. Comput., 219 (2013), 11178–11190 | MR | Zbl

[10] T. Hou, J. Zhang, Y. Li, Y. Yang, “New elliptic projections and a priori error estimates of $H^1$-Galerkin mixed finite element methods for optimal control problems governed by parabolic integro-differential equations”, Appl. Math. Comput., 311 (2017), 29–46 | MR | Zbl

[11] T. Hou, “Error estimates of expanded mixed methods for optimal control problems governed by hyperbolic integro-differential equations”, Numer. Meth. Part. Differ. Equ., 29 (2013), 1675–1693 | DOI | MR | Zbl

[12] R. Li, W. B. Liu, N. Yan, “A posteriori error estimates of recovery type for distributed convex optimal control problems”, J. Sci. Comput., 41 (2002), 1321–1349 | MR | Zbl

[13] J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971 | MR | Zbl

[14] Y. Liu, H. Li, J. Wang, “Splitting positive definite mixed element method for pseudohyperbolic equations”, Numer. Meth. Part. Differ. Equ., 28 (2012), 670–688 | DOI | MR | Zbl

[15] C. Meyer, A. Rösch, “Superconvergence properties of optimal control problems”, SIAM J. Control Optim., 433 (2004), 970–985 | DOI | MR

[16] D. Meidner, B. Vexler, “A priori error estimates for space-time finite element discretization of parabolic optimal control problems Part I: problems without control constraints”, SIAM J. Control Optim., 47 (2008), 1150–1177 | DOI | MR | Zbl

[17] D. Meidner, B. Vexler, “A priori error estimates for space-time finite element discretization of parabolic optimal control problems Part II: Problems with control constraints”, SIAM J. Control Optim., 47 (2008), 1301–1329 | DOI | MR | Zbl

[18] P. A. Raviart, J. M. Thomas, “A mixed finite element method for 2-nd order elliptic problems”, Mathematical Aspects of the Finite Element Method, Lect. Notes in Math., 606, Springer, Berlin, 1977, 292–315 | DOI | MR

[19] W. Shen, L. Ge, D. Yang, W. Liu, “Sharp a posteriori error estimates for optimal control governed by parabolic integro-differential equations”, J. Sci. Comput., 65 (2015), 1–33 | DOI | MR | Zbl

[20] F. Wang, Y. Chen, Y. Tang, “Superconvergence of fully discrete splitting positive definite mixed FEM for hyperbolic equations”, Numer. Meth. Part. Differ. Equ., 30 (2014), 175–186 | DOI | MR | Zbl

[21] X. Xing, Y. Chen, “Superconvergence of mixed methods for optimal control problems governed by parabolic equations”, Adv. Appl. Math. Mech., 3 (2011), 401–419 | DOI | MR | Zbl

[22] D. Yang, Y. Chang, W. B. Liu, “A priori error estimate and superconvergence analysis for an optimal control problem of bilinear type”, J. Comput. Math., 4 (2008), 471–487 | MR | Zbl

[23] D. Yang, “A splitting positive definite mixed element method for miscible displacement of compressible flow in porous media”, Numer. Meth. Part. Differ. Equ., 17 (2011), 229–249 | DOI | MR

[24] J. Zhang, D. Yang, “A splitting positive definite mixed element method for second-order hyperbolic equations”, Numer. Meth. Part. Differ. Equ., 25 (2009), 622–636 | DOI | MR | Zbl