Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2020_23_1_a1, author = {C. Xu}, title = {A priori error estimates and superconvergence of splitting positive definite mixed finite element methods for pseudo-hyperbolic integro-differential optimal control problems}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {23--37}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a1/} }
TY - JOUR AU - C. Xu TI - A priori error estimates and superconvergence of splitting positive definite mixed finite element methods for pseudo-hyperbolic integro-differential optimal control problems JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2020 SP - 23 EP - 37 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a1/ LA - ru ID - SJVM_2020_23_1_a1 ER -
%0 Journal Article %A C. Xu %T A priori error estimates and superconvergence of splitting positive definite mixed finite element methods for pseudo-hyperbolic integro-differential optimal control problems %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2020 %P 23-37 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a1/ %G ru %F SJVM_2020_23_1_a1
C. Xu. A priori error estimates and superconvergence of splitting positive definite mixed finite element methods for pseudo-hyperbolic integro-differential optimal control problems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 1, pp. 23-37. http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a1/
[1] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991 | MR | Zbl
[2] H. Brunner, N. Yan, “Finite element methods for optimal control problems governed by integral equations and integro-differential equations”, Numer. Math., 101 (2005), 1–27 | DOI | MR | Zbl
[3] Y. Chen, “Superconvergence of quadratic optimal control problems by triangular mixed finite element elements”, Inter. J. Numer. Meths. Eng., 75:8 (2008), 881–898 | DOI | MR | Zbl
[4] Y. Chen, “Superconvergence of mixed finite element methods for optimal control problems”, Math. Comp., 77 (2008), 1269–1291 | DOI | MR | Zbl
[5] Y. Chen, Y. Dai, “Superconvergence for optimal control problems governed by semi-linear elliptic equations”, J. Sci. Comput., 39 (2009), 206–221 | DOI | MR | Zbl
[6] Y. Chen, Y. Huang, W. B. Liu, N. Yan, “Error estimates and superconvergence of mixed finite element methods for convex optimal control problems”, J. Sci. Comput., 42:3 (2010), 382–403 | DOI | MR | Zbl
[7] J. Douglas, J. E. Roberts, “Global estimates for mixed methods for second order elliptic equations”, Math. Comp., 44 (1985), 39–52 | DOI | MR | Zbl
[8] R. E. Ewing, M. M. Liu, J. Wang, “Superconvergence of mixed finite element approximations over quadrilaterals”, SIAM J. Numer. Anal., 36 (1999), 772–787 | DOI | MR
[9] H. Guo, H. Fu, J. Zhang, “A splitting positive definite mixed finite element method for elliptic optimal control problem”, Appl. Math. Comput., 219 (2013), 11178–11190 | MR | Zbl
[10] T. Hou, J. Zhang, Y. Li, Y. Yang, “New elliptic projections and a priori error estimates of $H^1$-Galerkin mixed finite element methods for optimal control problems governed by parabolic integro-differential equations”, Appl. Math. Comput., 311 (2017), 29–46 | MR | Zbl
[11] T. Hou, “Error estimates of expanded mixed methods for optimal control problems governed by hyperbolic integro-differential equations”, Numer. Meth. Part. Differ. Equ., 29 (2013), 1675–1693 | DOI | MR | Zbl
[12] R. Li, W. B. Liu, N. Yan, “A posteriori error estimates of recovery type for distributed convex optimal control problems”, J. Sci. Comput., 41 (2002), 1321–1349 | MR | Zbl
[13] J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971 | MR | Zbl
[14] Y. Liu, H. Li, J. Wang, “Splitting positive definite mixed element method for pseudohyperbolic equations”, Numer. Meth. Part. Differ. Equ., 28 (2012), 670–688 | DOI | MR | Zbl
[15] C. Meyer, A. Rösch, “Superconvergence properties of optimal control problems”, SIAM J. Control Optim., 433 (2004), 970–985 | DOI | MR
[16] D. Meidner, B. Vexler, “A priori error estimates for space-time finite element discretization of parabolic optimal control problems Part I: problems without control constraints”, SIAM J. Control Optim., 47 (2008), 1150–1177 | DOI | MR | Zbl
[17] D. Meidner, B. Vexler, “A priori error estimates for space-time finite element discretization of parabolic optimal control problems Part II: Problems with control constraints”, SIAM J. Control Optim., 47 (2008), 1301–1329 | DOI | MR | Zbl
[18] P. A. Raviart, J. M. Thomas, “A mixed finite element method for 2-nd order elliptic problems”, Mathematical Aspects of the Finite Element Method, Lect. Notes in Math., 606, Springer, Berlin, 1977, 292–315 | DOI | MR
[19] W. Shen, L. Ge, D. Yang, W. Liu, “Sharp a posteriori error estimates for optimal control governed by parabolic integro-differential equations”, J. Sci. Comput., 65 (2015), 1–33 | DOI | MR | Zbl
[20] F. Wang, Y. Chen, Y. Tang, “Superconvergence of fully discrete splitting positive definite mixed FEM for hyperbolic equations”, Numer. Meth. Part. Differ. Equ., 30 (2014), 175–186 | DOI | MR | Zbl
[21] X. Xing, Y. Chen, “Superconvergence of mixed methods for optimal control problems governed by parabolic equations”, Adv. Appl. Math. Mech., 3 (2011), 401–419 | DOI | MR | Zbl
[22] D. Yang, Y. Chang, W. B. Liu, “A priori error estimate and superconvergence analysis for an optimal control problem of bilinear type”, J. Comput. Math., 4 (2008), 471–487 | MR | Zbl
[23] D. Yang, “A splitting positive definite mixed element method for miscible displacement of compressible flow in porous media”, Numer. Meth. Part. Differ. Equ., 17 (2011), 229–249 | DOI | MR
[24] J. Zhang, D. Yang, “A splitting positive definite mixed element method for second-order hyperbolic equations”, Numer. Meth. Part. Differ. Equ., 25 (2009), 622–636 | DOI | MR | Zbl