Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2020_23_1_a0, author = {A. S. Kozelkov and S. V. Lashkin and A. A. Kurkin and A. V. Kornev and A. M. Vyalykh}, title = {Effective implementation of the parallel {SIMPLE} algorithm based on multigrid method}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {1--22}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a0/} }
TY - JOUR AU - A. S. Kozelkov AU - S. V. Lashkin AU - A. A. Kurkin AU - A. V. Kornev AU - A. M. Vyalykh TI - Effective implementation of the parallel SIMPLE algorithm based on multigrid method JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2020 SP - 1 EP - 22 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a0/ LA - ru ID - SJVM_2020_23_1_a0 ER -
%0 Journal Article %A A. S. Kozelkov %A S. V. Lashkin %A A. A. Kurkin %A A. V. Kornev %A A. M. Vyalykh %T Effective implementation of the parallel SIMPLE algorithm based on multigrid method %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2020 %P 1-22 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a0/ %G ru %F SJVM_2020_23_1_a0
A. S. Kozelkov; S. V. Lashkin; A. A. Kurkin; A. V. Kornev; A. M. Vyalykh. Effective implementation of the parallel SIMPLE algorithm based on multigrid method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 1, pp. 1-22. http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a0/
[1] L. G. Loicyanskii, Mekhanika zhidkosti i gaza, Gostekhizdat, M.–L., 1950
[2] F. Moukalled, M. Darwish, “A Unified formulation of the segregated class of algorithms for fluid flow at all speeds”, Numerical Heat Transfer, 37:1 (2000), 103–139 | DOI
[3] K. S. Shterev, S. K. Stefanov, “Pressure based finite volume method for calculation of compressible viscous gas flows”, J. Computational Physics, 229:2 (2010), 461–480 | DOI | MR | Zbl
[4] A. Katz, V. Sankaran, “High aspect ratio grid effects on the accuracy of Navier-Stokes solutions on unstructured meshes”, Computers Fluids, 65 (2012), 66–79 | DOI | MR | Zbl
[5] A. S. Kozelkov, V. V. Kurulin, E. S. Tyatyushkina, O. L. Puchkova, “Modelirovanie techenii vyazkoi neszhimaemoi zhidkosti na nestrukturirovannyh setkah metodom otsoedinennyh vihrei”, Matematicheskoe modelirovanie, 26:8 (2014), 81–96 | Zbl
[6] A. S. Kozelkov, V. V. Kurulin, “Eddy-resolving numerical scheme for simulation of turbulent incompressible flows”, USSR Comput. Math. and Math. Phys., 55:7 (2015), 1232–1241 | DOI | DOI | MR | Zbl
[7] A. S. Kozelkov, R. M. Shagaliev, V. V. Kurulin, A. V. Yalozo, S. V. Lashkin, “Investigation of supercomputer capabilities for the scalable numerical simulation of computational fluid dynamics problems in industrial applications”, USSR Comput. Math. and Math. Phys., 56:8 (2016), 1506–1516 | DOI | DOI | MR | Zbl
[8] M. Barth, M. Byckling . Ilieva, S. Saarinen, M. Schliephake, Best Practice Guide — Intel Xeon Phi v1.1, 2014 (with V. Weinberg) https://www.researchgate.net/publication/260369376
[9] E. Lindholm, J. Nickolls, S. Oberman, J. Montrym, “NVIDIA Tesla: a unified graphics and computing architecture”, IEEE MICRO, 28:2 (2008), 39–55 | DOI
[10] S. A. Isaev, P. A. Baranov, A. E. Usachov, Mnogoblochnye vychislitel'nye tekhnologii v pakete VP2/3 po aerotermodinamike, LAP LAMBERT Academic Publishing, Saarbryuken, 2013
[11] L. Y. M. Gicquel, N. Gourdain, J. F. Boussuge, H. Deniau, G. Staffelbach, P. Wolf, “High performance parallel computing of flows in complex geometries”, Comptes Rendus Mecanique, 339:2–3 (2011), 104–124 | DOI | Zbl
[12] X. Guo, B. D. Rogers, S. Lind, P. K. Stansby, “New massively parallel scheme for Incompressible Smoothed Particle Hydrodynamics (ISPH) for highly nonlinear and distorted flow”, Computer Physics Communications, 233 (2018), 16–28 | DOI | MR
[13] A. D. Chow, B. D. Rogers, S. J. Lind, P. K. Stansby, “Incompressible SPH (ISPH) with fast Poisson solver on a GPU”, Computer Physics Communications, 226 (2018), 81–103 | DOI
[14] Y. Notay, A. Napov, “A massively parallel solver for discrete Poisson-like problems”, J. Computational Physics, 281 (2015), 237–250 | DOI | MR | Zbl
[15] M. Emans, “Performance of parallel AMG-preconditioners in CFD-codes for weakly compressible flows”, Parallel Computing, 36:5–6 (2010), 326–338 | DOI | MR | Zbl
[16] A. S. Kozelkov, Yu. N. Deryugin, S. V. i dr. Lashkin, “Implementation in Logos software of a computational scheme for a viscous incompressible fluid using the multigrid method based on algorithm SIMPLE”, VANT. Ser.: Mat. Mod. Fiz., 4, 2013, 31–43
[17] A. Brandt, “Guide to multigrid development”, Multigrid Methods, Proc. Conf. Held at Koln-Porz, November 23–27, 1981, Lect. Notes in Mathematics, 960, eds. W. Hackbusch, U. Trottenberg, Springer, 1982, 220–312 | DOI | MR
[18] Y. Saad, Iterative Methods for Sparse Linear Systems, Second ed., SIAM, Minneapolis, 2003 | MR | Zbl
[19] P. Vanek, J. Mandel, M. Brezina, “Algebraic multigrid by smoothed aggregation for second and fourth order problems”, Computing, 56:3 (1996), 179–196 | DOI | MR | Zbl
[20] K. N. Volkov, Yu. N. Deryugin, V. N. Emel'yanov, A. S. Kozelkov, I. V. Teterina, “Algebraicheskii mnogosetochnyi metod v zadachah vychislitel'noi gidrodinamiki”, Vychislitel'nye metody i programmirovanie, 15 (2014), 183–200
[21] A. S. Kozelkov, V. V. Kurulin, O. L. Puchkova, S. V. Lashkin, “Modelirovanie turbulentnyh techenii s ispol'zovaniem algebraicheskoi modeli reinol'dsovyh napryazhenii s universal'nymi pristenochnymi funkciyami”, Vychislitel'naya mekhanika sploshnyh sred, 7:1 (2014), 40–51
[22] A. V. Boiko, Yu. M. Nechepurenko, R. N. Zhuchkov, A. S. Kozelkov, “Blok rascheta polozheniya laminarno-turbulentnogo perekhoda dlya paketa programm LOGOS”, Teplofizika i aeromekhanika, 21:2 (2014), 201–220
[23] A. V. Safronov, Yu. N. Deryugin, R. N. Zhuchkov i dr., “Rezul'taty validacii mnogofunkcional'nogo paketa programm LOGOS pri reshenii zadach aerogazodinamiki starta i poleta raket-nositelei”, Matematicheskoe modelirovanie, 26:9 (2014), 83–95 | Zbl
[24] A. S. Kozelkov, A. A. Kurkin, E. N. Pelinovskii, V. V. Kurulin, E. S. Tyatyushkina, “Modeling the disturbances in the lake Chebarkul caused by the fall of the meteorite in 2013”, Fluid Dynamics, 50:6 (2015), 828–840 | DOI | MR | Zbl
[25] A. S. Kozelkov, A. A. Kurkin, E. N. Pelinovskii, “Effect of the angle of water entry of a body on the generated wave heights”, Fluid Dynamics, 51:2 (2016), 288–298 | DOI | DOI | MR | Zbl
[26] F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications”, AIAA J., 32:6 (1994), 1598–1605 | DOI
[27] OpenFOAM, http://openfoam.org/
[28] N. S. Bahvalov, N. P. Zhidkov, G. M. Kobel'kov, Chislennye metody, Laboratoriya Bazovyh Znanii, M., 2002 | MR
[29] U. Ghia, K. N. Ghia, C. T. Shin, “High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method”, J. Computational Physics, 48:3 (1982), 387–411 | DOI | MR | Zbl
[30] J. C. Vogel, J. K. Eaton, “Combined heat transfer and fluid dynamic measurements downstream of a backward-facing step”, J. Heat Transfer, 107:4 (1985), 922–929 | DOI
[31] D. S. Uotkins, Osnovy matrichnyh vychislenii, BINOM, M., 2009
[32] C. S. Woodward, SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers, UCRL-PRES-213978, Lawrence Livermore National Laboratory, Livermore
[33] D. A. Novaev, Yu. G. Bartenev, D. I. i dr. Lipov, “Programmnye sredstva STK dlya issledovaniya effektivnosti vypolneniya parallel'nyh prilozhenii”, Voprosy atomnoi nauki i tekhniki. Ser. Matematicheskoe modelirovanie fizicheskih processov, 4, 2011, 72–81
[34] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, MPI: The Complete Reference, MIT Press, 1996
[35] A. S. Antonov, Parallel'noe programmirovanie s ispol'zovaniem tekhnologii OpenMP, Uchebnoe posobie, Izd-vo MGU, M., 2009