Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2019_22_4_a6, author = {A. G. Megrabov}, title = {Conservation laws and other formulas for families of rays and wavefronts and for the eikonal equation}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {483--497}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2019_22_4_a6/} }
TY - JOUR AU - A. G. Megrabov TI - Conservation laws and other formulas for families of rays and wavefronts and for the eikonal equation JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2019 SP - 483 EP - 497 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2019_22_4_a6/ LA - ru ID - SJVM_2019_22_4_a6 ER -
%0 Journal Article %A A. G. Megrabov %T Conservation laws and other formulas for families of rays and wavefronts and for the eikonal equation %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2019 %P 483-497 %V 22 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2019_22_4_a6/ %G ru %F SJVM_2019_22_4_a6
A. G. Megrabov. Conservation laws and other formulas for families of rays and wavefronts and for the eikonal equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 4, pp. 483-497. http://geodesic.mathdoc.fr/item/SJVM_2019_22_4_a6/
[1] A. G. Megrabov, “O nekotorom gruppovom podkhode k obratnym zadacham dlya differencial'nykh uravneniy”, Dokl. AN SSSR, 275:3 (1984), 583–586 | MR | Zbl
[2] Megrabov A. G., “On one differential identity”, Dokl. Math., 69:2 (2004), 282–285 | MR | Zbl
[3] Megrabov A. G., “Differential identities relating the Laplacian, the modulus of gradient, and the gradient directional angle of a scalar function”, Dokl. Math., 79:1 (2009), 136–140 | DOI | MR | Zbl
[4] Megrabov A. G., “Differential identities relating the modulus and direction of a vector field and Euler's hydrodynamic equations”, Dokl. Math., 82:1 (2010), 625–629 | DOI | MR | Zbl
[5] Megrabov A. G., “Some differential identities and their applications to the eikonal equation”, Dokl. Math., 82:1 (2010), 638–664 | DOI | MR | Zbl
[6] A. G. Megrabov, “Divergence formulas (conservation laws) in the differential geometry of plane curves and their applications”, Dokl. Math., 84:3 (2011), 857–861 | DOI | MR | Zbl
[7] A. G. Megrabov, “Conservation laws in differential geometry of plane curves and for eikonal equation and inverse problems”, J. Inv. Ill-Posed Problems, 21:5 (2013), 601–628 | DOI | MR | Zbl
[8] A. G. Megrabov, “On some formulas for families of curves and surfaces and Aminov's divergent representations”, Lobachevskii J. Math., 39:1 (2018), 114–120 | DOI | MR | Zbl
[9] A. G. Megrabov, “Relationships between the characteristics of mutually orthogonal families of curves and surfaces”, Bull. Novosibirsk Comp. Center. Ser. Mathematical Modeling in Geophysics, 2016, no. 19, 43–50 | Zbl
[10] A. G. Megrabov, “On the conservation laws for a family of surfaces”, Bull. Novosibirsk Comp. Center. Ser. Mathematical Modeling in Geophysics, 2016, no. 19, 51–58 | Zbl
[11] L. V. Ovsyannikov, Gruppovoy analiz differencial'nykh uravneniy, Nauka, M., 1978
[12] V. N. Grebenev, S. B. Medvedev, “Hamiltonian structure and conservation laws of two-dimensional linear elasticity theory”, Z. Angew. Math. Mech., 2016 | DOI | MR
[13] Yu. A. Chirkunov, S. B. Medvedev, “Conservation laws for plane steady potential barotropic flow”, European J. Appl. Math., 24:6 (2013), 789–801 | DOI | MR | Zbl
[14] P. P. Kiryakov, S. I. Senashov, A. N. Yakhno, Prilozhenie simmetriy i zakonov sokhraneniya k resheniyu differencial'nykh uravneniy, Izd-vo SO RAN, Novosibirsk, 2001
[15] S. K. Godunov, E. I. Romenskiy, Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Nauchnaya kniga, Novosibirsk, 1998
[16] V. A. Dorodnicyn, “Konechno-raznostnyy analog teoremy Neter”, DAN, 328:6 (1993), 678–682 | Zbl
[17] A. N. Konovalov, “Diskretnye modeli v dinamicheskoy zadache lineynoy teorii uprugosti i zakony sokhraneniya”, Differencial'nye uravneniya, 48:7 (2012), 990–996 | MR | Zbl
[18] S. S. Byushgens, Differencial'naya geometriya, Izd-vo LKI, M., 2008
[19] S. P. Novikov, I. A. Taymanov, Sovremennye geometricheskie struktury i polya, Izd-vo MCNMO, M., 2005
[20] N. E. Kochin, Vektornoe ischislenie i nachala tenzornogo ischisleniya, GONTI, M.–L., 1938 | MR
[21] B. L. Rozhdestvenskiy, N. N. Yanenko, Sistemy kvazilineynykh uravneniy, Nauka, M., 1978 | MR
[22] Yu. A. Aminov, Geometriya vektornogo polya, Nauka, M., 1990