Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2019_22_4_a3, author = {M. I. Ivanov and I. A. Kremer and M. V. Urev}, title = {A solution of the degenerate {Neumann} problem by the finite element method}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {437--451}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2019_22_4_a3/} }
TY - JOUR AU - M. I. Ivanov AU - I. A. Kremer AU - M. V. Urev TI - A solution of the degenerate Neumann problem by the finite element method JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2019 SP - 437 EP - 451 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2019_22_4_a3/ LA - ru ID - SJVM_2019_22_4_a3 ER -
%0 Journal Article %A M. I. Ivanov %A I. A. Kremer %A M. V. Urev %T A solution of the degenerate Neumann problem by the finite element method %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2019 %P 437-451 %V 22 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2019_22_4_a3/ %G ru %F SJVM_2019_22_4_a3
M. I. Ivanov; I. A. Kremer; M. V. Urev. A solution of the degenerate Neumann problem by the finite element method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 4, pp. 437-451. http://geodesic.mathdoc.fr/item/SJVM_2019_22_4_a3/
[1] V. Girault, P. A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, 1986 | MR | Zbl
[2] S. G. Mikhlin, Variacionnye metody v matematicheskoy fizike, Nauka, M., 1970 | MR
[3] F. S'yarle, Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980
[4] V. V. Voevodin, Yu. A. Kuznecov, Matricy i vychisleniya, Nauka, M., 1984 | MR
[5] M. Steigemann, M. Fulland, “On the computation of the pure Neumann problem in 2-dimensional elasticity”, Int. J. Fract., 146 (2007), 265–277 | DOI | Zbl
[6] S. V. Nepomnyaschikh, “Schwarz alternating method for solving the singular Neumann problem”, Soviet J. Numer. Anal. and Math. Model., 5:1 (1990), 69–78 | MR | Zbl
[7] Y. J. Lee, J. Wu, J. Xu, L. Zikatanov, “A sharp convergence estimate for the method of subspace corrections for singular system of equations”, Mathematics of Computation, 77:262 (2008), 831–850 | DOI | MR | Zbl
[8] X. Dai, “Finite element approximation of the pure Neumann problem using the iterative penalty method”, Applied Mathematics and Computation, 186 (2007), 1367–1373 | DOI | MR | Zbl
[9] E. Savenkov, H. Andrä, O. Iliev, An Analysis of One Regularization Approach for Solution of Pure Neumann Problem, Berichte des Faruenhofer ITWM, 137, Kaiserslautern, 2008
[10] P. Bochev, R. B. Lehoucq, “On finite element solution of the pure Neumann problem”, SIAM Rev., 47:1 (2005), 50–66 | DOI | MR | Zbl
[11] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Verlag, New-York, 1991 | MR | Zbl
[12] M. Benzi, G. H. Golub, J. Liesen, “Numerical solution of saddle point problems”, Acta Numerica, 14 (2005), 1–137 | DOI | MR | Zbl
[13] K. Kergrenea, S. Prudhommea, L. Chamoinb, M. Laforest, “Approximation of constrained problems using the PGD method with application to pure Neumann problems”, Comput. Methods Appl. Mech. Engrg., 317 (2017), 507–525 | DOI | MR
[14] Kremer I. A., Urev M. V., “A regularization method for stationary Maxwell equations in an inhomogeneous conducting medium”, Numerical Analysis and Applications, 2:2 (2009), 131–139 | DOI | Zbl
[15] Kremer I. A., Urev M. V., “Solution of a regularized problem for a stationary magnetic field in a nonhomogeneous conducting medium by a finite element method”, Numerical Analysis and Applications, 3:1 (2010), 25–38 | DOI | MR | Zbl
[16] Dzh. Ortega, Vvedenie v parallel'nye i vektornye metody resheniya lineynykh sistem, Mir, M., 1991
[17] I. E. Tamm, Osnovy teorii elektrichestva, Nauka, M., 1976