A solution of the degenerate Neumann problem by the finite element method
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 4, pp. 437-451
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper deals with the solution of the degenerate Neumann problem for the diffusion equation by the finite element method. First, an extended generalized formulation of the Neumann problem in the Sobolev space $H^1(\Omega)$ is derived and investigated. Then a discrete analogue of this problem is formulated using standard finite element approximations of the space $H^1(\Omega)$. An iterative method for solving the corresponding SLAE is proposed. Some examples of solving the model problems are used to discuss the numerical peculiarities of the algorithm proposed.
@article{SJVM_2019_22_4_a3,
author = {M. I. Ivanov and I. A. Kremer and M. V. Urev},
title = {A solution of the degenerate {Neumann} problem by the finite element method},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {437--451},
publisher = {mathdoc},
volume = {22},
number = {4},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2019_22_4_a3/}
}
TY - JOUR AU - M. I. Ivanov AU - I. A. Kremer AU - M. V. Urev TI - A solution of the degenerate Neumann problem by the finite element method JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2019 SP - 437 EP - 451 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2019_22_4_a3/ LA - ru ID - SJVM_2019_22_4_a3 ER -
%0 Journal Article %A M. I. Ivanov %A I. A. Kremer %A M. V. Urev %T A solution of the degenerate Neumann problem by the finite element method %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2019 %P 437-451 %V 22 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2019_22_4_a3/ %G ru %F SJVM_2019_22_4_a3
M. I. Ivanov; I. A. Kremer; M. V. Urev. A solution of the degenerate Neumann problem by the finite element method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 4, pp. 437-451. http://geodesic.mathdoc.fr/item/SJVM_2019_22_4_a3/