A solution of the degenerate Neumann problem by the finite element method
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 4, pp. 437-451.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the solution of the degenerate Neumann problem for the diffusion equation by the finite element method. First, an extended generalized formulation of the Neumann problem in the Sobolev space $H^1(\Omega)$ is derived and investigated. Then a discrete analogue of this problem is formulated using standard finite element approximations of the space $H^1(\Omega)$. An iterative method for solving the corresponding SLAE is proposed. Some examples of solving the model problems are used to discuss the numerical peculiarities of the algorithm proposed.
@article{SJVM_2019_22_4_a3,
     author = {M. I. Ivanov and I. A. Kremer and M. V. Urev},
     title = {A solution of the degenerate {Neumann} problem by the finite element method},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {437--451},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2019_22_4_a3/}
}
TY  - JOUR
AU  - M. I. Ivanov
AU  - I. A. Kremer
AU  - M. V. Urev
TI  - A solution of the degenerate Neumann problem by the finite element method
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2019
SP  - 437
EP  - 451
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2019_22_4_a3/
LA  - ru
ID  - SJVM_2019_22_4_a3
ER  - 
%0 Journal Article
%A M. I. Ivanov
%A I. A. Kremer
%A M. V. Urev
%T A solution of the degenerate Neumann problem by the finite element method
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2019
%P 437-451
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2019_22_4_a3/
%G ru
%F SJVM_2019_22_4_a3
M. I. Ivanov; I. A. Kremer; M. V. Urev. A solution of the degenerate Neumann problem by the finite element method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 4, pp. 437-451. http://geodesic.mathdoc.fr/item/SJVM_2019_22_4_a3/

[1] V. Girault, P. A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, 1986 | MR | Zbl

[2] S. G. Mikhlin, Variacionnye metody v matematicheskoy fizike, Nauka, M., 1970 | MR

[3] F. S'yarle, Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980

[4] V. V. Voevodin, Yu. A. Kuznecov, Matricy i vychisleniya, Nauka, M., 1984 | MR

[5] M. Steigemann, M. Fulland, “On the computation of the pure Neumann problem in 2-dimensional elasticity”, Int. J. Fract., 146 (2007), 265–277 | DOI | Zbl

[6] S. V. Nepomnyaschikh, “Schwarz alternating method for solving the singular Neumann problem”, Soviet J. Numer. Anal. and Math. Model., 5:1 (1990), 69–78 | MR | Zbl

[7] Y. J. Lee, J. Wu, J. Xu, L. Zikatanov, “A sharp convergence estimate for the method of subspace corrections for singular system of equations”, Mathematics of Computation, 77:262 (2008), 831–850 | DOI | MR | Zbl

[8] X. Dai, “Finite element approximation of the pure Neumann problem using the iterative penalty method”, Applied Mathematics and Computation, 186 (2007), 1367–1373 | DOI | MR | Zbl

[9] E. Savenkov, H. Andrä, O. Iliev, An Analysis of One Regularization Approach for Solution of Pure Neumann Problem, Berichte des Faruenhofer ITWM, 137, Kaiserslautern, 2008

[10] P. Bochev, R. B. Lehoucq, “On finite element solution of the pure Neumann problem”, SIAM Rev., 47:1 (2005), 50–66 | DOI | MR | Zbl

[11] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Verlag, New-York, 1991 | MR | Zbl

[12] M. Benzi, G. H. Golub, J. Liesen, “Numerical solution of saddle point problems”, Acta Numerica, 14 (2005), 1–137 | DOI | MR | Zbl

[13] K. Kergrenea, S. Prudhommea, L. Chamoinb, M. Laforest, “Approximation of constrained problems using the PGD method with application to pure Neumann problems”, Comput. Methods Appl. Mech. Engrg., 317 (2017), 507–525 | DOI | MR

[14] Kremer I. A., Urev M. V., “A regularization method for stationary Maxwell equations in an inhomogeneous conducting medium”, Numerical Analysis and Applications, 2:2 (2009), 131–139 | DOI | Zbl

[15] Kremer I. A., Urev M. V., “Solution of a regularized problem for a stationary magnetic field in a nonhomogeneous conducting medium by a finite element method”, Numerical Analysis and Applications, 3:1 (2010), 25–38 | DOI | MR | Zbl

[16] Dzh. Ortega, Vvedenie v parallel'nye i vektornye metody resheniya lineynykh sistem, Mir, M., 1991

[17] I. E. Tamm, Osnovy teorii elektrichestva, Nauka, M., 1976