The Walrasian equilibrium and centralized distributed optimization in terms of modern convex optimization methods on the example of resource allocation problem
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 4, pp. 415-436.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the resource allocation problem and its numerical solution. The following is demonstrated: 1) the Walrasian price-adjustment mechanism for determining the equilibrium; 2) the decentralized role of the prices; 3) Slater’s method for price restrictions (dual Lagrange multipliers); 4) a new mechanism for determining equilibrium prices, in which prices are fully controlled not by Center (Government), but by economic agents — nodes (factories). In the economic literature, only the convergence of the methods considered is proved. In contrast, this paper provides an accurate analysis of the convergence rate of the described procedures for determining the equilibrium. The analysis is based on the primal-dual nature of the algorithms proposed. More precisely, in this paper, we propose the economic interpretation of the following numerical primal-dual methods of the convex optimization: dichotomy and subgradient projection method.
@article{SJVM_2019_22_4_a2,
     author = {E. A. Vorontsova and A. V. Gasnikov and A. S. Ivanova and E. A. Nurminsky},
     title = {The {Walrasian} equilibrium and centralized distributed optimization in terms of modern convex optimization methods on the example of resource allocation problem},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {415--436},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2019_22_4_a2/}
}
TY  - JOUR
AU  - E. A. Vorontsova
AU  - A. V. Gasnikov
AU  - A. S. Ivanova
AU  - E. A. Nurminsky
TI  - The Walrasian equilibrium and centralized distributed optimization in terms of modern convex optimization methods on the example of resource allocation problem
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2019
SP  - 415
EP  - 436
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2019_22_4_a2/
LA  - ru
ID  - SJVM_2019_22_4_a2
ER  - 
%0 Journal Article
%A E. A. Vorontsova
%A A. V. Gasnikov
%A A. S. Ivanova
%A E. A. Nurminsky
%T The Walrasian equilibrium and centralized distributed optimization in terms of modern convex optimization methods on the example of resource allocation problem
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2019
%P 415-436
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2019_22_4_a2/
%G ru
%F SJVM_2019_22_4_a2
E. A. Vorontsova; A. V. Gasnikov; A. S. Ivanova; E. A. Nurminsky. The Walrasian equilibrium and centralized distributed optimization in terms of modern convex optimization methods on the example of resource allocation problem. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 4, pp. 415-436. http://geodesic.mathdoc.fr/item/SJVM_2019_22_4_a2/

[1] Danskin Dzh. M., Teoriya maksmina, Izd-vo “Sovetskoe radio”, M., 1970

[2] V. F. Dem'yanov, V. N. Malozemov, Vvedenie v minimaks, Nauka, M., 1972 | MR

[3] Zh. P. Oben, Nelineynyy analiz i ego ekonomicheskie prilozheniya, Mir, M., 1988

[4] Rokafellar R., Vypuklyy analiz, Mir, M., 1973

[5] Allen-Zhu Z., Orecchia L., Linear coupling: An ultimate unification of gradient and mirror descent, arXiv: 1407.1537 | MR

[6] D. P. Bertsekas, “Extended monotropic programming and duality”, J. Optimization Theory and Applications, 139:2 (2008), 209–225 | DOI | MR

[7] D. P. Bertsekas, A. Nedic, A. E. Ozdaglar, Convex Analysis, Optimization, Athena Scientific, Belmont, Massachusetts, 2003 | MR | Zbl

[8] D. P. Bertsekas, J. N. Tsitsiklis, Parallel and Distributed Optimization: Numerical Methods, Prentice-Hall International, 1989 | MR

[9] S. Boyd, L. Vandenberghe, Convex Optimization, 2004 | MR | Zbl

[10] E. J. Friedman, S. S. Oren, “The complexity of resource allocation and price mechanisms under bounded rationality”, Economic Theory, 6:2 (1995), 225–250 ; arXiv: 1711.00394 | DOI | MR | Zbl

[11] A. V. Gasnikov, Sovremennye chislennye metody optimizacii. Metod universal'nogo gradientnogo spuska, uchebnoe posobie, MFTI, M., 2018; arXiv: 1711.00394

[12] A. Nedic, A. Ozdaglar, “Cooperative distributed multi-agent optimizations”, Convex Optimization in Signal Processing and Communications, eds. Y. Eldar, D .Palomar, Cambridge University Press, 2010, 340–386 | MR | Zbl

[13] Yu. Nesterov, “Smooth minimization of non-smooth functions”, Mathematical Programming, 103 (2005), 127–152 | DOI | MR | Zbl

[14] Yu. Nesterov, “Primal-dual subgradient methods for convex problems”, Mathematical Programming. Ser. B, 120:1 (2009), 261–283 | DOI | MR

[15] Yu. Nesterov, V. Shikhman, “Distributed Price Adjustment Based on Convex Analysis”, J. Optimization Theory and Applications, 172:2 (2017), 594–622 | DOI | MR | Zbl

[16] Resource allocation problem. Python code, https://github.com/evorontsova/Resource-allocation-problem/blob/master/Resource_allocation_problem.ipynb

[17] R. T. Rockafellar, “Monotropic programming: descent algorithms and duality”, Nonlinear Programming 4, eds. O.L. Mangasarian, R.R. Meyer, S. M. Robinson, Academic Press, NY, 1981, 327–366 | MR

[18] A. Ivanova, P. Dvurechensky, A. Gasnikov, D. Kamzolov, Composite optimization for the resource allocation problem, arXiv: 1810.00595