Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2019_22_4_a1, author = {V. G. Borisov and Yu. N. Zakharov and Yu. I. Shokin and E. A. Ovcharenko and K. Y. Klyshnikov and I. N. Sizova and A. V. Batranin and Y. A. Kudryavtseva and P. S. Onishchenko}, title = {A numerical method for predicting hemodynamic effects in vascular prostheses}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {399--414}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2019_22_4_a1/} }
TY - JOUR AU - V. G. Borisov AU - Yu. N. Zakharov AU - Yu. I. Shokin AU - E. A. Ovcharenko AU - K. Y. Klyshnikov AU - I. N. Sizova AU - A. V. Batranin AU - Y. A. Kudryavtseva AU - P. S. Onishchenko TI - A numerical method for predicting hemodynamic effects in vascular prostheses JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2019 SP - 399 EP - 414 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2019_22_4_a1/ LA - ru ID - SJVM_2019_22_4_a1 ER -
%0 Journal Article %A V. G. Borisov %A Yu. N. Zakharov %A Yu. I. Shokin %A E. A. Ovcharenko %A K. Y. Klyshnikov %A I. N. Sizova %A A. V. Batranin %A Y. A. Kudryavtseva %A P. S. Onishchenko %T A numerical method for predicting hemodynamic effects in vascular prostheses %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2019 %P 399-414 %V 22 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2019_22_4_a1/ %G ru %F SJVM_2019_22_4_a1
V. G. Borisov; Yu. N. Zakharov; Yu. I. Shokin; E. A. Ovcharenko; K. Y. Klyshnikov; I. N. Sizova; A. V. Batranin; Y. A. Kudryavtseva; P. S. Onishchenko. A numerical method for predicting hemodynamic effects in vascular prostheses. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 4, pp. 399-414. http://geodesic.mathdoc.fr/item/SJVM_2019_22_4_a1/
[1] C. Martin, W. Sun, “Biomechanical characterization of aortic valve tissue in humans and common animal models”, J. of Biomedical Materials Research. Part A, A100:6 (2012), 1592–1599
[2] K. Yu. Klyshnikov, E. A. Ovcharenko, V. G. Borisov, I. N. Sizova, N. N. Burkov, A. V. Batranin, Yu. A. Kudryavceva, Yu. N. Zakharov, Yu. I. Shokin, “Modelirovanie gemodinamiki sosudistykh protezov “KemAngiprotez” in silico”, Mat. biol. i bioinf., 12:3 (2017), 559–569 | DOI | MR
[3] Y. Cadroy, T. A. Horbett, S. Hanson, “Discrimination between platelet-mediated and coagulation-mediated mechanisms in a model of complex thrombus formation in vivo”, J. Lab. Clin. Med., 113:4 (1989), 436–448
[4] L. D. Casa, D. H. Deaton, D. N. Ku, “Role of high shear rate in thrombosis”, J. Vascular Surgery, 2015, no. 61, 1068–1080 | DOI
[5] L. S. Barbarash, S. V. Ivanov, I. Yu. Zhuravleva i dr., “12-letniy opyt ispol'zovaniya bioprotezov dlya zamescheniya infraingvinal'nykh arteriy”, Angiologiya i sosudistaya khirurgiya, 12:3 (2006), 91–97
[6] A. O. Ivchenko, A. N. Shvedov, O. A. Ivchenko, “Sosudistye protezy, ispol'zuemye pri rekonstruktivnykh operaciyakh na magistral'nykh arteriyakh nizhnikh konechnostey”, Byulleten' sibirskoy mediciny, 16:1 (2017), 132–139 | DOI
[7] A. V. Batranin, S. V. Chakhlov, B. I. Kapranov, V. A. Klimenov, D. V. Grinev, “Design of the x-ray micro-CT scanner tolmi-150–10 and its perspective application in non-destructive evaluation”, Applied Mechanics and Materials, 2013, no. 379, 3–10 | DOI
[8] A. J. Geers, H. G. Morales, I. Larrabide, C. Butakoff, P. Bijlenga, A. F. Frangi, “Wall shear stress at the initiation site of cerebral aneurysms”, Biomech. Model. Mechanobiol., 16:1 (2017), 97–115 | DOI
[9] Caro C. G., Pedley T. J., Schroter R. S., Seed W. A., The Mechanics of the Circulation, Oxford University Press, New York–Toronto, 1978 | Zbl
[10] Y. I. Cho, K. R. Kensey, “Effects of the non-Newtonian viscosity of blood on flows in diseased arterial vessels. Part I: Steady flows”, Biorheology, 28:3–4 (1991), 241–262 | DOI
[11] A. E. Medvedev, “Dvukhfaznaya model' techeniya krovi v krupnykh i melkikh krovenosnykh sosudakh”, Matematicheskaya biologiya i bioinformatika, 6:2 (2011), 228–249 | DOI
[12] L. G. Loycyanskiy, Mekhanika zhidkosti i gaza, Izd-e 7, ispr., Drofa, M., 2003
[13] V. V. Ragulin, “K zadache o protekanii vyazkoy zhidkosti skvoz' ogranichennuyu oblast' pri zadannom perepade davleniya ili napora”, Dinamika sploshnoy sredy, 27, In-t gidrodinamiki AN SSSR, Novosibirsk, 1976, 78–92 | MR
[14] N. A. Geidarov, Y. N. Zakharov, Yi. I. Shokin, “Solution of the problem of viscous fluid flow with a given pressure differential”, Russ. J. of Numerical Analysis and Mathematical Modelling, 26:1 (2011), 39–48 | DOI | MR | Zbl
[15] H. Milosevic, N. A. Gaydarov, Y. N. Zakharov, “Model of incompressible viscous fluid flow driven by pressure difference in a given channel”, Int. J. of Heat and Mass Transfer, 10 (2013), 242–246 | DOI
[16] M. S. Olufsen, C. S. Peskin, W. Y. Kim, E. M. Pedersen, A. Nadim, J. Larsen, “Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions”, Annals of Biomedical Engineering, 28:11 (2000), 1281–1299 | DOI
[17] A. Keshmiria, A. Ruiz-Solera, M. McElroya, F. Kabinejadian, “Numerical investigation on the geometrical effects of novel graft designs for peripheral artery bypass surgery”, Proc. CIRP, 49 (2016), 147–152 | DOI
[18] J. H. Ferziger, M. Peric, Computational Methods for Fluid Dynamics, 3rd ed., Springer, 2001 | MR
[19] SALOME open source integration platform for numerical simulation, http://www.salome-platform.org/
[20] The OpenFOAM Foundation, OpenCFD, openFOAM user guiden, http://www.openfoam.org/
[21] R. I. Issa, “Solution of the implicitly discretised fluid flow equations by operator-splitting”, J. of Computational Physics, 62:1 (1985), 40–65 | DOI | MR
[22] U. Ayachit, The ParaView Guide: A Parallel Visualization Application, Kitware, 2015
[23] P. Xu, X. Liu, Q. Song et al, “Patient-specific structural effects on hemodynamics in the ischemic lower limb artery”, Scientific Reports, 6 (2016), 39225 | DOI
[24] S. T. Hussain, “Blood flow measurements in lower limb arteries using duplex ultrasound”, Annals of The Royal College of Surgeons of England, 79:5 (1997), 323–330
[25] A. M. Robertson, A. Sequeira, R. G. Owens, “Rheological models for blood”, Cardiovascular Mathematics, Modeling and simulation of the circulatory system, 1, Springer, 2009, 211–241 | MR
[26] A. Kamiya, R. Bukhari, T. Togawa, “Adaptive regulation of wall shear stress optimizing vascular tree function”, Bull. Math. Biol., 46:1 (1984), 127–137 | DOI | MR
[27] Z. M. Ruggeri, J. Orje, R. Haberman, A. Federici, A. J. Reininger, “Activation-independent platelet adhesion and aggregation under elevated shear stress”, Blood, 108:6 (2006), 1903–1910 | DOI