A numerical method for predicting hemodynamic effects in vascular prostheses
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 4, pp. 399-414.

Voir la notice de l'article provenant de la source Math-Net.Ru

The three-dimensional unsteady-state periodic flow of blood in xenogenic vascular bioprostheses is simulated using computational fluid dynamics methods. The geometry of the computational domain is based on microtomographic scanning of bioprostheses. To set a variable pressure gradient causing a non-stationary flow in the prostheses, personal-specific data of the Doppler-echography of the blood flow of a particular patient are used. A comparative analysis of the velocity fields in the flow areas corresponding to three real samples of bioprostheses with multiple stenoses is carried out. In the zones of stenosis and outside of them, the distribution of the near-wall shear stress, which influences the risk factors for thrombosis in the prostheses, is analyzed. An algorithm for predicting the hemodynamic effects arising in vascular bioprostheses, based on the numerical modeling of a blood flow in them, is proposed.
@article{SJVM_2019_22_4_a1,
     author = {V. G. Borisov and Yu. N. Zakharov and Yu. I. Shokin and E. A. Ovcharenko and K. Y. Klyshnikov and I. N. Sizova and A. V. Batranin and Y. A. Kudryavtseva and P. S. Onishchenko},
     title = {A numerical method for predicting hemodynamic effects in vascular prostheses},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {399--414},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2019_22_4_a1/}
}
TY  - JOUR
AU  - V. G. Borisov
AU  - Yu. N. Zakharov
AU  - Yu. I. Shokin
AU  - E. A. Ovcharenko
AU  - K. Y. Klyshnikov
AU  - I. N. Sizova
AU  - A. V. Batranin
AU  - Y. A. Kudryavtseva
AU  - P. S. Onishchenko
TI  - A numerical method for predicting hemodynamic effects in vascular prostheses
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2019
SP  - 399
EP  - 414
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2019_22_4_a1/
LA  - ru
ID  - SJVM_2019_22_4_a1
ER  - 
%0 Journal Article
%A V. G. Borisov
%A Yu. N. Zakharov
%A Yu. I. Shokin
%A E. A. Ovcharenko
%A K. Y. Klyshnikov
%A I. N. Sizova
%A A. V. Batranin
%A Y. A. Kudryavtseva
%A P. S. Onishchenko
%T A numerical method for predicting hemodynamic effects in vascular prostheses
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2019
%P 399-414
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2019_22_4_a1/
%G ru
%F SJVM_2019_22_4_a1
V. G. Borisov; Yu. N. Zakharov; Yu. I. Shokin; E. A. Ovcharenko; K. Y. Klyshnikov; I. N. Sizova; A. V. Batranin; Y. A. Kudryavtseva; P. S. Onishchenko. A numerical method for predicting hemodynamic effects in vascular prostheses. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 4, pp. 399-414. http://geodesic.mathdoc.fr/item/SJVM_2019_22_4_a1/

[1] C. Martin, W. Sun, “Biomechanical characterization of aortic valve tissue in humans and common animal models”, J. of Biomedical Materials Research. Part A, A100:6 (2012), 1592–1599

[2] K. Yu. Klyshnikov, E. A. Ovcharenko, V. G. Borisov, I. N. Sizova, N. N. Burkov, A. V. Batranin, Yu. A. Kudryavceva, Yu. N. Zakharov, Yu. I. Shokin, “Modelirovanie gemodinamiki sosudistykh protezov “KemAngiprotez” in silico”, Mat. biol. i bioinf., 12:3 (2017), 559–569 | DOI | MR

[3] Y. Cadroy, T. A. Horbett, S. Hanson, “Discrimination between platelet-mediated and coagulation-mediated mechanisms in a model of complex thrombus formation in vivo”, J. Lab. Clin. Med., 113:4 (1989), 436–448

[4] L. D. Casa, D. H. Deaton, D. N. Ku, “Role of high shear rate in thrombosis”, J. Vascular Surgery, 2015, no. 61, 1068–1080 | DOI

[5] L. S. Barbarash, S. V. Ivanov, I. Yu. Zhuravleva i dr., “12-letniy opyt ispol'zovaniya bioprotezov dlya zamescheniya infraingvinal'nykh arteriy”, Angiologiya i sosudistaya khirurgiya, 12:3 (2006), 91–97

[6] A. O. Ivchenko, A. N. Shvedov, O. A. Ivchenko, “Sosudistye protezy, ispol'zuemye pri rekonstruktivnykh operaciyakh na magistral'nykh arteriyakh nizhnikh konechnostey”, Byulleten' sibirskoy mediciny, 16:1 (2017), 132–139 | DOI

[7] A. V. Batranin, S. V. Chakhlov, B. I. Kapranov, V. A. Klimenov, D. V. Grinev, “Design of the x-ray micro-CT scanner tolmi-150–10 and its perspective application in non-destructive evaluation”, Applied Mechanics and Materials, 2013, no. 379, 3–10 | DOI

[8] A. J. Geers, H. G. Morales, I. Larrabide, C. Butakoff, P. Bijlenga, A. F. Frangi, “Wall shear stress at the initiation site of cerebral aneurysms”, Biomech. Model. Mechanobiol., 16:1 (2017), 97–115 | DOI

[9] Caro C. G., Pedley T. J., Schroter R. S., Seed W. A., The Mechanics of the Circulation, Oxford University Press, New York–Toronto, 1978 | Zbl

[10] Y. I. Cho, K. R. Kensey, “Effects of the non-Newtonian viscosity of blood on flows in diseased arterial vessels. Part I: Steady flows”, Biorheology, 28:3–4 (1991), 241–262 | DOI

[11] A. E. Medvedev, “Dvukhfaznaya model' techeniya krovi v krupnykh i melkikh krovenosnykh sosudakh”, Matematicheskaya biologiya i bioinformatika, 6:2 (2011), 228–249 | DOI

[12] L. G. Loycyanskiy, Mekhanika zhidkosti i gaza, Izd-e 7, ispr., Drofa, M., 2003

[13] V. V. Ragulin, “K zadache o protekanii vyazkoy zhidkosti skvoz' ogranichennuyu oblast' pri zadannom perepade davleniya ili napora”, Dinamika sploshnoy sredy, 27, In-t gidrodinamiki AN SSSR, Novosibirsk, 1976, 78–92 | MR

[14] N. A. Geidarov, Y. N. Zakharov, Yi. I. Shokin, “Solution of the problem of viscous fluid flow with a given pressure differential”, Russ. J. of Numerical Analysis and Mathematical Modelling, 26:1 (2011), 39–48 | DOI | MR | Zbl

[15] H. Milosevic, N. A. Gaydarov, Y. N. Zakharov, “Model of incompressible viscous fluid flow driven by pressure difference in a given channel”, Int. J. of Heat and Mass Transfer, 10 (2013), 242–246 | DOI

[16] M. S. Olufsen, C. S. Peskin, W. Y. Kim, E. M. Pedersen, A. Nadim, J. Larsen, “Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions”, Annals of Biomedical Engineering, 28:11 (2000), 1281–1299 | DOI

[17] A. Keshmiria, A. Ruiz-Solera, M. McElroya, F. Kabinejadian, “Numerical investigation on the geometrical effects of novel graft designs for peripheral artery bypass surgery”, Proc. CIRP, 49 (2016), 147–152 | DOI

[18] J. H. Ferziger, M. Peric, Computational Methods for Fluid Dynamics, 3rd ed., Springer, 2001 | MR

[19] SALOME open source integration platform for numerical simulation, http://www.salome-platform.org/

[20] The OpenFOAM Foundation, OpenCFD, openFOAM user guiden, http://www.openfoam.org/

[21] R. I. Issa, “Solution of the implicitly discretised fluid flow equations by operator-splitting”, J. of Computational Physics, 62:1 (1985), 40–65 | DOI | MR

[22] U. Ayachit, The ParaView Guide: A Parallel Visualization Application, Kitware, 2015

[23] P. Xu, X. Liu, Q. Song et al, “Patient-specific structural effects on hemodynamics in the ischemic lower limb artery”, Scientific Reports, 6 (2016), 39225 | DOI

[24] S. T. Hussain, “Blood flow measurements in lower limb arteries using duplex ultrasound”, Annals of The Royal College of Surgeons of England, 79:5 (1997), 323–330

[25] A. M. Robertson, A. Sequeira, R. G. Owens, “Rheological models for blood”, Cardiovascular Mathematics, Modeling and simulation of the circulatory system, 1, Springer, 2009, 211–241 | MR

[26] A. Kamiya, R. Bukhari, T. Togawa, “Adaptive regulation of wall shear stress optimizing vascular tree function”, Bull. Math. Biol., 46:1 (1984), 127–137 | DOI | MR

[27] Z. M. Ruggeri, J. Orje, R. Haberman, A. Federici, A. J. Reininger, “Activation-independent platelet adhesion and aggregation under elevated shear stress”, Blood, 108:6 (2006), 1903–1910 | DOI