Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2019_22_4_a0, author = {A. B. Bakushinsky and A. S. Leonov}, title = {Numerical solution to a three-dimensional coefficient inverse problem for the wave equation with integral data in a cylindrical domain}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {381--397}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2019_22_4_a0/} }
TY - JOUR AU - A. B. Bakushinsky AU - A. S. Leonov TI - Numerical solution to a three-dimensional coefficient inverse problem for the wave equation with integral data in a cylindrical domain JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2019 SP - 381 EP - 397 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2019_22_4_a0/ LA - ru ID - SJVM_2019_22_4_a0 ER -
%0 Journal Article %A A. B. Bakushinsky %A A. S. Leonov %T Numerical solution to a three-dimensional coefficient inverse problem for the wave equation with integral data in a cylindrical domain %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2019 %P 381-397 %V 22 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2019_22_4_a0/ %G ru %F SJVM_2019_22_4_a0
A. B. Bakushinsky; A. S. Leonov. Numerical solution to a three-dimensional coefficient inverse problem for the wave equation with integral data in a cylindrical domain. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 4, pp. 381-397. http://geodesic.mathdoc.fr/item/SJVM_2019_22_4_a0/
[1] D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer, Berlin, 1998 | MR | Zbl
[2] L. Pestov, “On determining an absorption coefficient and a speed of sound in the wave equation by the BC method”, J. of Inverse and Ill-posed Problems, 22:2 (2014), 245–250 | DOI | MR | Zbl
[3] A. Agaltsov, R. Novikov, “Riemann-Hilbert problem approach for two-dimensional flow inverse scattering”, J. of Mathematical Physics, 55:1 (2014), 103502, 25 pp. | DOI | MR | Zbl
[4] V. A. Burov, D. I. Zotov, O. D. Rumyanceva, “Vosstanovlenie prostranstvennykh raspredeleniy skorosti zvuka i pogloscheniya v fantomakh myagkikh biotkaney po eksperimental'nym dannym ul'trazvukovogo tomografirovaniya”, Akust. zhurn., 61:2 (2015), 254–273 | DOI
[5] M. I. Belishev, I. B. Ivanov, I. V. Kubyshkin, V. S. Semenov, “Numerical testing in determination of sound speed from a part of boundary by the BC-method”, J. Inverse Ill-Posed Probl., 24:2 (2016), 159–180 | DOI | MR | Zbl
[6] L. Beilina, M. V. Klibanov, Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems, Springer, New York:, 2012 | Zbl
[7] L. Beilina, N. T. Th'anh, M. V. Klibanov, M. A. Fiddy, “Reconstruction from blind experimental data for an inverse problem for a hyperbolic equation”, Inverse Problems, 30:24, 025002 | MR | Zbl
[8] A. B. Bakushinsky, M. Yu. Kokurin, Iterative Methods for Approximate Solution of Inverse Problems, Mathematics and Its Applications, 577, Springer, Dordrecht, 2004 | MR | Zbl
[9] A. B. Bakushinskiy, M. Yu. Kokurin, Iteracionnye metody resheniya nekorrektnykh operatornykh uravneniy s gladkimi operatorami, Editorial URSS, M., 2002
[10] A. V. Goncharskiy, S. Yu. Romanov, “O dvukh podkhodakh k resheniyu koefficientnykh obratnykh zadach dlya volnovykh uravneniy”, Zhurn. vychisl. matem. i mat. fiziki, 52:2 (2012), 263–269 | MR | Zbl
[11] A. V. Goncharskiy, S. Yu. Romanov, “Superkomp'yuternye tekhnologii v razrabotke metodov resheniya obratnykh zadach v UZI-tomografii”, Vychislitel'nye metody i programmirovanie: novye vychislitel'nye tekhnologii, 13:1 (2012), 235–238
[12] M. M. Lavrent'ev, “Ob odnoy obratnoy zadache dlya volnovogo uravneniya”, Dokl. AN SSSR, 157:3 (1964), 520–521 | Zbl
[13] A. B. Bakushinskiy, A. I. Kozlov, M. Yu. Kokurin, “Ob odnoy obratnoy zadache dlya trekhmernogo volnovogo uravneniya”, Zhurn. vychisl. matem. i mat. fiziki, 43:8 (2003), 1201–1209 | MR | Zbl
[14] A. B. Bakushinsky, A. S. Leonov, “Fast numerical method of solving 3D coefficient inverse problem for wave equation with integral data”, J. Inv. Ill-Posed Probl., 26:4 (2018), 477–492 | DOI | MR | Zbl
[15] A. N. Tikhonov, A. A. Samarskiy, Uravneniya matematicheskoy fiziki, Nauka, M., 1966 | MR
[16] Bakushinsky A., Goncharsky A., Ill-Posed Problems: Theory and Applications, Kluwer Academic Publishers, Dordrecht, 1994 | MR
[17] G. M. Vaynikko, A. Yu. Veretennikov, Iteracionnye procedury v nekorrektnykh zadachakh, Nauka, M., 1986 | MR
[18] V. A. Morozov, Regulyarnye metody resheniya nekorrektno postavlennykh zadach, Nauka, M., 1987
[19] Tikhonov A., Goncharsky A., Stepanov V., A. Yagola, Numerical methods for the solution of ill-posed problems, Kluwer, Dordrecht, 1995 | MR | MR | Zbl
[20] H. W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems, Kluwer, Dordrecht, 1996 | MR | Zbl
[21] Tikhonov A. N., Leonov A. S., Yagola A. G., Non-Linear Ill-Posed Problems, Chapmen and Hall, London, 1998 | MR
[22] A. S. Leonov, Reshenie nekorrektno postavlennykh obratnykh zadach. Ocherk teorii, prakticheskie algoritmy i demonstracii v MATLAB, Izd-e 2, Librokom, M., 2013