Asymptotic analysis of the crack tip stress field (consideration of higher order terms)
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 3, pp. 345-361.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the multi-parameter asymptotic description of the stress field near the crack tip of a finite crack in an infinite isotropic elastic plane medium subject to 1) tensile stress; 2) in-plane shear; 3) mixed mode loading for a wide range of mode-mixing situations (Mode I and Mode II). The multi-parameter series expansion of the stress tensor components containing higher order terms has been constructed. All the coefficients of the multi-parameter series expansion of the stress field are given. The main focus is on the discussion of the influence of considering the higher-order terms of the Williams expansion. Analysis of the higher order terms in the stress field is made. It is shown that the larger distance from the crack tip, the more terms are necessary to be kept in the asymptotic series expansion. Therefore, it can be concluded that several more higher-order terms of the Williams expansion must be used for the stress field description when the distance from the crack tip is not small enough. The crack propagation direction angle has been calculated. Two fracture criteria: maximum tangential stress criterion and the strain energy density criterion, are used. The multi-parameter form of two commonly used fracture criteria is introduced and tested. Thirty and more terms of the Williams expansion enable the angle to be calculated more precisely.
@article{SJVM_2019_22_3_a6,
     author = {L. V. Stepanova},
     title = {Asymptotic analysis of the crack tip stress field (consideration of higher order terms)},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {345--361},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2019_22_3_a6/}
}
TY  - JOUR
AU  - L. V. Stepanova
TI  - Asymptotic analysis of the crack tip stress field (consideration of higher order terms)
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2019
SP  - 345
EP  - 361
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2019_22_3_a6/
LA  - ru
ID  - SJVM_2019_22_3_a6
ER  - 
%0 Journal Article
%A L. V. Stepanova
%T Asymptotic analysis of the crack tip stress field (consideration of higher order terms)
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2019
%P 345-361
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2019_22_3_a6/
%G ru
%F SJVM_2019_22_3_a6
L. V. Stepanova. Asymptotic analysis of the crack tip stress field (consideration of higher order terms). Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 3, pp. 345-361. http://geodesic.mathdoc.fr/item/SJVM_2019_22_3_a6/

[1] Akbardoost J., Rastin A., “Comprehensive data for calculating the higher order terms of crack tip stress field in disk-type specimens under mixed mode loading”, Theoretical and Applied Fracture Mechanics, 76 (2015), 75–90 | DOI

[2] Williams M. L., “On the stress distribution at the base of a stationary crack”, Trans. ASME. J. of Applied Mechanics, 24 (1957), 109–114 | MR | Zbl

[3] Hello G., Tahar M. B., Roelandt J.-M., “Analytical determination of coefficients in crack-tip stress expansions for a finite crack in an infinite plane medium”, Int. J. of Solids and Structures, 49 (2012), 556–566 | DOI

[4] Eleonskii S. I., Odincev I. N., Pisarev V. S., Chernov A. V., “Issledovanie processa rasprostraneniya treschiny po dannym izmerenii lokal'nogo deformacionnogo otklika. I. Pole dejstvuyuschih napryazhenii”, Uchenye zapiski CAGI, 46:7 (2015), 55–80

[5] Sih G. C., “Strain-energy-density factor applied to mixed mode crack problems”, Int. J. Fract., 10:3 (1974), 305–321 | DOI

[6] Vesely V., Sobek J., Seitl S., “Multi-parameter approximation of the stress field in a cracked body in the more distant surrounding of the crack tip”, Int J. Fatigue, 89 (2016), 20–35 | DOI

[7] Erdogan F., Sih G. C., “On the crack extension in plates under plane loading and transverse shear”, Trans. ASME. Ser. D. J. Basic Engineering, 85:4 (1963), 519–527 | DOI

[8] Malikova L., Vesely V., Seitl S., “Crack propagation direction in a mixed mode geometry estimated via multi-parameter fracture criteria”, Int. J. Fatigue, 89 (2016), 99–107 | DOI

[9] Malikova L., “Multi-parameter fracture criteria for the estimation of crack propagation direction applied to a mixed-mode geometry”, Engineering Fracture Mechanics, 143 (2015), 32–46 | DOI

[10] Mokhtarishirazabad M., Lopez-Crespo P., Moreno B., Lopez-Moreno A., Zanganeh M., “Evaluation of crack-tip fields from DIC data: A parameter study”, Int. J. Fatigue, 89 (2016), 11–19 | DOI

[11] Stepanova L., Adylina E., “Stress-strain state in the vicinity of a crack tip under mixed loading”, J. of Applied Mechanics and Technical Physics, 55:5 (2014), 885–895 | DOI | MR | Zbl

[12] Stepanova L., “Asymptotics of stresses and strain rates near the tip of a transverse shear crack in a material whose behavior is described by a fractional-linear law”, J. of Applied Mechanics and Technical Physics, 50:1 (2009), 137–146 | DOI | MR | Zbl

[13] Lychak O., Holyns'kiy I., “Improving the accuracy of derivation of the Williams' series parameters under mixed (I+II) mode loading by compensation of measurement bias in the stress field components data”, Measurement Science and Technology, 27:12 (2016) | DOI

[14] Stepanova L. V., Yakovleva E. M., “Asymptotic stress field in the vicinity of a mixed-mode crack under plane stress conditions for a power-law hardening material”, J. of Mechanics of Materials and Structures, 10:3 (2015), 367–393 | DOI | MR

[15] Ayatollahi M. R., Moazzami M., “Digital image correlation method for calculating coefficients of Williams expansion in compact tension”, Optic and Lasers in Engineering, 90 (2017), 26–33 | DOI

[16] Chernyatin A. S., Matvienko Yu. G., Lopez-Crespo P., “Mathematical and numerical correction of the DIC displacements for determination of stress field along crack front”, Proc. Structural Integrity, v. 2, 2016, 2650–2658 | DOI

[17] Malikova L., Vesely V., “Estimation of the crack propagation direction in a mixed-mode geometry via multi-parameter fracture criteria”, Frattura ed Integrita Strutturale, 33 (2015), 25–32 | DOI

[18] Weißgraeber P., Leguillon D., Becker W., “A review of Finite Fracture Mechanics: crack initiation at singular and non-singular stress raisers”, Arch. Appl. Mech., 86:1–2 (2016), 375–401

[19] Stepanova L. V., Roslyakov P. S., “Multi-parameter description of the crack-tip stress field: Analytic determination of coefficients of crack-tip stress expansions in the vicinity of the crack tips of two finite cracks in an infinite plane medium”, Int. J. of Solids and Structures, 100–101 (2016), 11–28 | DOI

[20] Muskhelishvili N. I., Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti, Nauka, M., 1966