Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2019_22_3_a5, author = {S. D. Senotrusova and O. F. Voropaeva}, title = {Mathematical modeling of positive connection functioning in the tumor markers {p53{\textendash}microRNA} system}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {325--344}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2019_22_3_a5/} }
TY - JOUR AU - S. D. Senotrusova AU - O. F. Voropaeva TI - Mathematical modeling of positive connection functioning in the tumor markers p53–microRNA system JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2019 SP - 325 EP - 344 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2019_22_3_a5/ LA - ru ID - SJVM_2019_22_3_a5 ER -
%0 Journal Article %A S. D. Senotrusova %A O. F. Voropaeva %T Mathematical modeling of positive connection functioning in the tumor markers p53–microRNA system %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2019 %P 325-344 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2019_22_3_a5/ %G ru %F SJVM_2019_22_3_a5
S. D. Senotrusova; O. F. Voropaeva. Mathematical modeling of positive connection functioning in the tumor markers p53–microRNA system. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 3, pp. 325-344. http://geodesic.mathdoc.fr/item/SJVM_2019_22_3_a5/
[1] Almazov V. P., Kochetkov D. V., Chumakov P. M., “p53 — instrument dlya terapii zlokachestvennyh zabolevanij cheloveka”, Molekulyarnaya biologiya, 41:6 (2007), 947–963
[2] Lane D., Levine A., “p53 Research: the past thirty years and the next thirty years”, Cold Spring Harb. Perspect. Biol., 2:12 (2010), a000893 | DOI
[3] Geva-Zatorsky N., Rosenfeld N., Itzkovitz Sh. et al., “Oscillations and variability in the p53 system”, Molecular Systems Biology, 2:1 (2006), 2006.0033 | DOI
[4] Batchelor E., Mock C. S., Bhan I., Loewer A., Lahav G., “Recurrent initiation: a mechanism for triggering p53 pulses in response to DNA damage”, Molecular Cell., 30:3 (2008), 277–289 | DOI
[5] Toettcher J. E., Mock C., Batchelor E., Loewer A., Lahav G., “A synthetic-natural hybrid oscillator in human cells”, PNAS, 107:39 (2010), 17047–17052 | DOI
[6] Purvis J. E., Karhohs K. W., Mock C. et al., “p53 dynamics control cell fate”, Science, 336:6087 (2012), 1440–1444 | DOI
[7] Paek A. L., Liu J. C., Loewer A., Forrester W. C., Lahav G., “Cell-to-cell variation in p53 dynamics leads to fractional killing”, Cell, 165:3 (2016), 631–642 | DOI | MR
[8] Goeman F., Strano S., Blandino G., “MicroRNAs as key effectors in the p53 network”, Int. Review of Cell and Molecular Biology, MiRNAs in Differentiation and Development, 333, eds. L. Galluzzi, I. Vitale, Academic Press, 2017, 51–91 | DOI
[9] Hermeking H., “MicroRNAs in the p53 network: micromanagement of tumor suppression”, Nature reviews cancer, 12:9 (2012), 613–626 | DOI
[10] Kolesnikov N. N., Titov S. E., Veryaskina Yu. A. i dr., “MikroRNK, evolyuciya i rak”, Citologiya, 55:3 (2013), 159–164 | Zbl
[11] Rokavec M., Li H., Jiang L., Hermeking H., “The p53/microRNA connection in gastrointestinal cancer”, Clinical and experimental gastroenterology, 7 (2014), 395–413
[12] Raver-Shapira N., Marciano E., Meiri E. et al., “Transcriptional activation of miR-34a contributes to p53-mediated apoptosis”, Molecular Cell, 26 (2007), 731–743 | DOI
[13] Bisio A., Sanctis V., Vescovo V. et al., “Identification of new p53 target microRNAs by bioinformatics and functional analysis”, BMC Cancer, 13:552 (2013) | DOI
[14] Zhang J., Sun Q., Zhang Z. et al., “Loss of microRNA-143/145 disturbs cellular growth and apoptosis of human epithelial cancers by impairing the Mdm2-p53 feedback loop”, Oncogene, 32:1 (2013), 61–69 | DOI
[15] Fornari F., Milazzo M., Galassi M. et al., “p53/Mdm2 feedback loop sustains miR-221 expression and dictates the response to anticancer treatments in hepatocellular carcinoma”, Molecular Cancer Research, 12:2 (2014), 203–216 | DOI
[16] Luo Z., Cui R., Tili E., Croce C., “Friend or Foe: MicroRNAs in the p53 network”, Cancer Letters, 419 (2018), 96–102 | DOI
[17] Voropaeva O. F., Shokin Yu. I., Nepomnyaschih L. M., Senchukova S. R., Matematicheskoe modelirovanie funkcionirovaniya i regulyacii biologicheskoj sistemy p53-Mdm2, RAMN, M., 2014 | Zbl
[18] Voropaeva O. F., Senotrusova S. D., Shokin Yu. I., “Deregulyaciya p53-zavisimyh mikroRNK: rezul'taty matematicheskogo modelirovaniya”, Matematicheskaya biologiya i bioinformatika, 12:1 (2017), 151–175 | DOI
[19] Lihoshvai V. A., Fadeev S. I., Demidenko G. V., Matushkin Yu. G., “Modelirovanie uravneniem s zapazdyvayuschim argumentom mnogostadijnogo sinteza bez vetvleniya”, Sib. zhurn. industr. matem., 7:1 (2004), 73–94 | Zbl
[20] Tiana G., Jensen M. H., Sneppen K., “Time delay as a key to apoptosis induction in the p53 network”, Eur. Phys. J. B, 29 (2002), 135–140 | DOI
[21] Voropaeva O. F., Senotrusova S. D., “Perekhod ot uravneniya s zapazdyvaniem k sisteme obyknovennyh differencial'nyh uravnenii v modeli seti onkomarkerov”, Matematicheskoe modelirovanie, 29:9 (2017), 135–154 | Zbl
[22] Voropaeva O. F., Senotrusova S. D., Shokin Y. I., “Numerical investigation of diagnostic properties of p53-dependent microRNAs”, RJNAMM, 32:3 (2017), 203–213 | Zbl
[23] Chen C. Y., Oliner J. D., Zhan Q. et al., “Interactions between p53 and MDM2 in a mammalian cell cycle checkpoint pathway”, Proc. of the National Academy of Sciences of the United States of America, 91:7 (1994), 2684–2688 | DOI
[24] Yang R., Huang B., Zhu Y. et al., Variable sensitivity to DNA damaging chemotherapeutic modulated by cell type-dependent bimodal p53 dynamics, https://www.biorxiv.org/content/early/2017/06/12/149013
[25] Iorio M. V., Visone R., Leva G. et al., “MicroRNA signatures in human ovarian cancer”, Cancer Res., 67 (2007), 8699–8707 | DOI
[26] Shulenina L. V., Mihailov V. F., Ledin E. V., Raeva N. F., Zasukhina G. D., “Ocenka effektivnosti r53-zavisimoi sistemy sohraneniya stabil'nosti genoma po soderzhaniyu mikroRNK i mRNK v krovi onkologicheskih bol'nyh”, Medicinskaya radiologiya i radiacionnaya bezopasnost', 60:1 (2015), 5–14 | Zbl
[27] Yu J., Baron V., Mercola D., Mustelin T., Adamson E. D., “A network of p73, p53 and Egr1 is required for efficient apoptosis in tumor cells”, Cell Death and Differentiation, 14 (2007), 436–446 | DOI
[28] Castro R. E., Ferreira D. M. S., Afonso M. B. et al., “miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease”, J. Hepatology, 58:1 (2013), 119–125 | DOI | MR
[29] Kato R., Mizuno Sh., Kadowaki M. et al., “Sirt1 expression is associated with CD31 expression in blood cells from patients with chronic obstructive pulmonary disease”, Respiratory Research, 17:139 (2016)
[30] Baker J. R., Vuppusetty C., Colley T. et al., “Oxidative stress dependent microRNA-34a activation via PI3K$\alpha$ reduces the expression of sirtuin-1 and sirtuin-6 in epithelial cells”, Scientific Reports, 6 (2016), 35871 | DOI
[31] Moore R., Ooi H. K., Kang T., Bleris L., Ma L., “MiR-192-mediated positive feedback loop controls the robustness of stress-induced p53 oscillations in breast cancer cells”, PLoS Comput. Biol., 11:12 (2015), e1004653 | DOI