Mathematical modeling of positive connection functioning in the tumor markers p53–microRNA system
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 3, pp. 325-344.

Voir la notice de l'article provenant de la source Math-Net.Ru

The hierarchy of minimal mathematical models of the dynamics of p53–Mdm2–microRNA system has been developed. The models are based on the differential equations with time delay, hiding complex mechanisms of interaction in the signal system of the p53 protein. We consider the two types of interaction of p53 with microRNAs: the positive direct connection and the positive feedback. The feedback of microRNA-p53 is due to the negative effect of microRNA on the protein Mdm2, which itself is a negative regulator of p53. To approximate the direct positive effect of p53 on the microRNA, a linear function or the Goldbeter–Koshland type representation is used. The comparison of numerical solutions with medical and biological data of a number of specific p53- dependent microRNAs is made, which proves the adequacy of the models proposed and the results of numerical analysis. Special attention was given to the analysis of the positive feedback of p53 and microRNAs. The minimal models adopted have allowed us to consider the most general regularities of the p53-dependent microRNAs functioning. In the framework of these mathematical models it is shown that it is possible to neglect the connection Mdm2–miRNA for, at least, some of the most studied microRNAs associated with a direct positive connection with p53. However, those of the microRNAs, which are important negative regulator Mdm2, can have the most significant impact on the functioning of the entire system p53–Mdm2–microRNA. Conditions were obtained under which the regulatory function of microRNAs with respect to p53 is manifested. The results of numerical experiments indicate that such microRNAs can be considered to be a factor of the anticancer therapy.
@article{SJVM_2019_22_3_a5,
     author = {S. D. Senotrusova and O. F. Voropaeva},
     title = {Mathematical modeling of positive connection functioning in the tumor markers {p53{\textendash}microRNA} system},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {325--344},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2019_22_3_a5/}
}
TY  - JOUR
AU  - S. D. Senotrusova
AU  - O. F. Voropaeva
TI  - Mathematical modeling of positive connection functioning in the tumor markers p53–microRNA system
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2019
SP  - 325
EP  - 344
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2019_22_3_a5/
LA  - ru
ID  - SJVM_2019_22_3_a5
ER  - 
%0 Journal Article
%A S. D. Senotrusova
%A O. F. Voropaeva
%T Mathematical modeling of positive connection functioning in the tumor markers p53–microRNA system
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2019
%P 325-344
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2019_22_3_a5/
%G ru
%F SJVM_2019_22_3_a5
S. D. Senotrusova; O. F. Voropaeva. Mathematical modeling of positive connection functioning in the tumor markers p53–microRNA system. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 3, pp. 325-344. http://geodesic.mathdoc.fr/item/SJVM_2019_22_3_a5/

[1] Almazov V. P., Kochetkov D. V., Chumakov P. M., “p53 — instrument dlya terapii zlokachestvennyh zabolevanij cheloveka”, Molekulyarnaya biologiya, 41:6 (2007), 947–963

[2] Lane D., Levine A., “p53 Research: the past thirty years and the next thirty years”, Cold Spring Harb. Perspect. Biol., 2:12 (2010), a000893 | DOI

[3] Geva-Zatorsky N., Rosenfeld N., Itzkovitz Sh. et al., “Oscillations and variability in the p53 system”, Molecular Systems Biology, 2:1 (2006), 2006.0033 | DOI

[4] Batchelor E., Mock C. S., Bhan I., Loewer A., Lahav G., “Recurrent initiation: a mechanism for triggering p53 pulses in response to DNA damage”, Molecular Cell., 30:3 (2008), 277–289 | DOI

[5] Toettcher J. E., Mock C., Batchelor E., Loewer A., Lahav G., “A synthetic-natural hybrid oscillator in human cells”, PNAS, 107:39 (2010), 17047–17052 | DOI

[6] Purvis J. E., Karhohs K. W., Mock C. et al., “p53 dynamics control cell fate”, Science, 336:6087 (2012), 1440–1444 | DOI

[7] Paek A. L., Liu J. C., Loewer A., Forrester W. C., Lahav G., “Cell-to-cell variation in p53 dynamics leads to fractional killing”, Cell, 165:3 (2016), 631–642 | DOI | MR

[8] Goeman F., Strano S., Blandino G., “MicroRNAs as key effectors in the p53 network”, Int. Review of Cell and Molecular Biology, MiRNAs in Differentiation and Development, 333, eds. L. Galluzzi, I. Vitale, Academic Press, 2017, 51–91 | DOI

[9] Hermeking H., “MicroRNAs in the p53 network: micromanagement of tumor suppression”, Nature reviews cancer, 12:9 (2012), 613–626 | DOI

[10] Kolesnikov N. N., Titov S. E., Veryaskina Yu. A. i dr., “MikroRNK, evolyuciya i rak”, Citologiya, 55:3 (2013), 159–164 | Zbl

[11] Rokavec M., Li H., Jiang L., Hermeking H., “The p53/microRNA connection in gastrointestinal cancer”, Clinical and experimental gastroenterology, 7 (2014), 395–413

[12] Raver-Shapira N., Marciano E., Meiri E. et al., “Transcriptional activation of miR-34a contributes to p53-mediated apoptosis”, Molecular Cell, 26 (2007), 731–743 | DOI

[13] Bisio A., Sanctis V., Vescovo V. et al., “Identification of new p53 target microRNAs by bioinformatics and functional analysis”, BMC Cancer, 13:552 (2013) | DOI

[14] Zhang J., Sun Q., Zhang Z. et al., “Loss of microRNA-143/145 disturbs cellular growth and apoptosis of human epithelial cancers by impairing the Mdm2-p53 feedback loop”, Oncogene, 32:1 (2013), 61–69 | DOI

[15] Fornari F., Milazzo M., Galassi M. et al., “p53/Mdm2 feedback loop sustains miR-221 expression and dictates the response to anticancer treatments in hepatocellular carcinoma”, Molecular Cancer Research, 12:2 (2014), 203–216 | DOI

[16] Luo Z., Cui R., Tili E., Croce C., “Friend or Foe: MicroRNAs in the p53 network”, Cancer Letters, 419 (2018), 96–102 | DOI

[17] Voropaeva O. F., Shokin Yu. I., Nepomnyaschih L. M., Senchukova S. R., Matematicheskoe modelirovanie funkcionirovaniya i regulyacii biologicheskoj sistemy p53-Mdm2, RAMN, M., 2014 | Zbl

[18] Voropaeva O. F., Senotrusova S. D., Shokin Yu. I., “Deregulyaciya p53-zavisimyh mikroRNK: rezul'taty matematicheskogo modelirovaniya”, Matematicheskaya biologiya i bioinformatika, 12:1 (2017), 151–175 | DOI

[19] Lihoshvai V. A., Fadeev S. I., Demidenko G. V., Matushkin Yu. G., “Modelirovanie uravneniem s zapazdyvayuschim argumentom mnogostadijnogo sinteza bez vetvleniya”, Sib. zhurn. industr. matem., 7:1 (2004), 73–94 | Zbl

[20] Tiana G., Jensen M. H., Sneppen K., “Time delay as a key to apoptosis induction in the p53 network”, Eur. Phys. J. B, 29 (2002), 135–140 | DOI

[21] Voropaeva O. F., Senotrusova S. D., “Perekhod ot uravneniya s zapazdyvaniem k sisteme obyknovennyh differencial'nyh uravnenii v modeli seti onkomarkerov”, Matematicheskoe modelirovanie, 29:9 (2017), 135–154 | Zbl

[22] Voropaeva O. F., Senotrusova S. D., Shokin Y. I., “Numerical investigation of diagnostic properties of p53-dependent microRNAs”, RJNAMM, 32:3 (2017), 203–213 | Zbl

[23] Chen C. Y., Oliner J. D., Zhan Q. et al., “Interactions between p53 and MDM2 in a mammalian cell cycle checkpoint pathway”, Proc. of the National Academy of Sciences of the United States of America, 91:7 (1994), 2684–2688 | DOI

[24] Yang R., Huang B., Zhu Y. et al., Variable sensitivity to DNA damaging chemotherapeutic modulated by cell type-dependent bimodal p53 dynamics, https://www.biorxiv.org/content/early/2017/06/12/149013

[25] Iorio M. V., Visone R., Leva G. et al., “MicroRNA signatures in human ovarian cancer”, Cancer Res., 67 (2007), 8699–8707 | DOI

[26] Shulenina L. V., Mihailov V. F., Ledin E. V., Raeva N. F., Zasukhina G. D., “Ocenka effektivnosti r53-zavisimoi sistemy sohraneniya stabil'nosti genoma po soderzhaniyu mikroRNK i mRNK v krovi onkologicheskih bol'nyh”, Medicinskaya radiologiya i radiacionnaya bezopasnost', 60:1 (2015), 5–14 | Zbl

[27] Yu J., Baron V., Mercola D., Mustelin T., Adamson E. D., “A network of p73, p53 and Egr1 is required for efficient apoptosis in tumor cells”, Cell Death and Differentiation, 14 (2007), 436–446 | DOI

[28] Castro R. E., Ferreira D. M. S., Afonso M. B. et al., “miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease”, J. Hepatology, 58:1 (2013), 119–125 | DOI | MR

[29] Kato R., Mizuno Sh., Kadowaki M. et al., “Sirt1 expression is associated with CD31 expression in blood cells from patients with chronic obstructive pulmonary disease”, Respiratory Research, 17:139 (2016)

[30] Baker J. R., Vuppusetty C., Colley T. et al., “Oxidative stress dependent microRNA-34a activation via PI3K$\alpha$ reduces the expression of sirtuin-1 and sirtuin-6 in epithelial cells”, Scientific Reports, 6 (2016), 35871 | DOI

[31] Moore R., Ooi H. K., Kang T., Bleris L., Ma L., “MiR-192-mediated positive feedback loop controls the robustness of stress-induced p53 oscillations in breast cancer cells”, PLoS Comput. Biol., 11:12 (2015), e1004653 | DOI