Simulation of body motion in viscous incompressible fluid
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 3, pp. 261-280.

Voir la notice de l'article provenant de la source Math-Net.Ru

The description of a method for modeling the motion of bodies in a viscous incompressible fluid with the use of counting technology on grids with overlapping (“chimera” technology) is given. Equations describing the flow of a viscous incompressible fluid are approximated by the finite volume method on an arbitrary unstructured grid. Their iterative solution is implemented using the SIMPLE algorithm. The description of the basic equations in the case of grid motion is given in this paper. The features of realizing the conditions on the boundaries of the grid regions that are established during the construction of the interpolation template are described. A method for overcoming numerical instability in the use of a rigid body model is demonstrated. The feature of taking into account the forces of gravitation in the case of the presence of multiphase media is described. The results of solving the problem of the motion of a cylinder in a fluid, the problem of the drop of a sphere into a fluid, and the problem of the ship’s model flooding are presented.
@article{SJVM_2019_22_3_a1,
     author = {A. S. Kozelkov and V. R. Efremov and A. A. Kurkin and N. V. Tarasova and D. A. Utkin and E. S. Tyatyushkina},
     title = {Simulation of body motion in viscous incompressible fluid},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {261--280},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2019_22_3_a1/}
}
TY  - JOUR
AU  - A. S. Kozelkov
AU  - V. R. Efremov
AU  - A. A. Kurkin
AU  - N. V. Tarasova
AU  - D. A. Utkin
AU  - E. S. Tyatyushkina
TI  - Simulation of body motion in viscous incompressible fluid
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2019
SP  - 261
EP  - 280
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2019_22_3_a1/
LA  - ru
ID  - SJVM_2019_22_3_a1
ER  - 
%0 Journal Article
%A A. S. Kozelkov
%A V. R. Efremov
%A A. A. Kurkin
%A N. V. Tarasova
%A D. A. Utkin
%A E. S. Tyatyushkina
%T Simulation of body motion in viscous incompressible fluid
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2019
%P 261-280
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2019_22_3_a1/
%G ru
%F SJVM_2019_22_3_a1
A. S. Kozelkov; V. R. Efremov; A. A. Kurkin; N. V. Tarasova; D. A. Utkin; E. S. Tyatyushkina. Simulation of body motion in viscous incompressible fluid. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 3, pp. 261-280. http://geodesic.mathdoc.fr/item/SJVM_2019_22_3_a1/

[1] Kiris S., Kwak D., Rogers S., Chang I., “Computational approach for probing the flow through artificial heart devices”, J. Biomech. Eng., 119:4 (1997), 452–460 | DOI

[2] Tahara Y., Wilson R., Carrica P., Stern F., “RANS simulation of a container ship using a single-phase level-set method with overset grids and the prognosis for extension to a self-propulsion simulator”, J. Marine Sci. Technol., 11:4 (2006), 209–228 | DOI

[3] Fast P., Shelley M. J., “A moving overset grid method for interface dynamics applied to non-Newtonian Hele-Show flow”, J. Comput. Phys., 195 (2004), 117–142 | DOI | MR | Zbl

[4] Mazhukin V. I., Samarskii A. A., Kastel'yanos O., Shapranov A. V., “Metod dinamicheskoi adaptacii dlya nestacionarnyh zadach s bol'shimi gradientami”, Mat. modelirovanie, 5:4 (1993), 32–56

[5] Godunov S. K., Prokopov G. P., “The use of moving meshes in gas-dynamical computations”, Computational Mathematics and Mathematical Physics, 12:2 (1972), 182–195 | DOI | Zbl

[6] Mittal R., Iaccarino G., “Immersed boundary methods”, Annual Review of Fluid Mechanics, 37 (2005), 239–261 | DOI | MR | Zbl

[7] Benek J. A., Buning P. G., Steger J. L., “A 3-D chimera grid embedding technique”, Proc. 7th Computational Physics Conf. (Cincinnati, OH, USA), AIAA J., 1985, AIAA 85-1523, 322–331 | DOI

[8] Abalakin I. V., Zhdanova N. S., Kozubskaya T. K., “Realizaciya metoda pogruzhennyh granic dlya modelirovaniya zadach vneshnego obtekaniya na nestrukturirovannyh setkah”, Mat. modelirovanie, 27:10 (2015), 5–20

[9] Wang Z. J., Parthasarathy V., “A fully automated chimera methodology for multiple moving body problems”, Int. J. for Numerical Methods in Fluids, 33:7 (2000), 919–938 | 3.0.CO;2-G class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[10] Lee K. R., Park J. H., Kim K. H., “High-order interpolation method for overset grid based on finite volume method”, AIAA J., 49:7 (2011), 1387–1398 | DOI

[11] Hahn S., Iaccarino G., Ananthan S., Baeder D., “Extension of CHIMPS for unstructed overset simulation and higher-order interpolation”, Proc. 19th AIAA Computational Fluid Dynamics, Fluid Dynamics and Co-located Conf. (San Antonio, Texas), 2009, AIAA 2009-3999 | DOI

[12] Tang H., Jones S. C., Sotiropoulos F., “An overset grid method for 3D unsteady incompressible flows”, J. of Computational Physics, 191:2 (2003), 567–600 | DOI | Zbl

[13] Wang Z. J., Yang H. Q., “A unified conservative zonal interface treatment for arbitrarily patched and overlapped grids”, 32nd Aerospace Sciences Meeting and Exhibit (Reno, NV, USA, 1994), AIAA Paper AIAA 94-0320 | DOI

[14] Kozelkov A. S., Shagaliev R. M., Kurulin V. V., Yalozo A. V., Lashkin S. V., “Investigation of supercomputer capabilities for the scalable numerical simulation of computational fluid dynamics problems in industrial applications”, Computational Mathematics and Mathematical Physics, 56:8 (2016), 1506–1516 | DOI | DOI | MR | Zbl

[15] Pogosyan M. A., Savel'evskih E. P., Shagaliev R. M. i dr., “Primenenie superkomp'yuternyh tekhnologii v Rossijskoj aviacionnoi promyshlennosti”, Mezhdunarodnaya enciklopediya CALStekhnologii. Aviacionno-kosmicheskoe mashinostroenie, ed. A.G. Bratuhina, OAO “NIC ASK”, M., 2015, 49–61

[16] Marco A., Mancini S., Miranda S., Scognamiglio R., Vitiello L., “Experimental and numerical hydrodynamic analysis of a stepped planing hull”, Appl. Ocean Res., 64 (2017), 135–154 | DOI

[17] Usachov A. E., Mazo A. B., Kalinin E. I. i dr., “Povyshenie effektivnosti chislennogo modelirovaniya turbulentnyh otryvnyh techenii s pomosch'yu primeneniya gibridnyh setok so strukturirovannymi raznomasshtabnymi blokami i nestrukturirovannymi vstavkami”, Trudy MAI, 2018, no. 99

[18] Zhang X., “Computation of viscous incompressible flow using pressure correction method on unstructured Chimera grid”, Int. J. Comp. Fluid Dynamics, 20:9 (2006), 637–650 | DOI | Zbl

[19] Deryugin Yu. N., Sarazov A. V., Zhuchkov R. N., “Osobennosti postroeniya metodiki rascheta na setkah tipa “Himera” dlya nestrukturirovannyh setok”, Mat. modelirovanie, 29:2 (2017), 106–118

[20] Ferziger J. H., Peric M., Computational Method for Fluid Dynamics, Springer-Verlag, New York, 2002 | MR

[21] Farhat C., Geuzaine Ph., Grandmonty C., “The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids”, J. of Computational Physics, 174 (2001), 669–694 | DOI | MR | Zbl

[22] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela. Regulyarnaya i haoticheskaya dinamika, Izhevsk, 2001

[23] Kozelkov A. S., Meleshkina D. P., Kurkin A. A. i dr., “Polnost'yu neyavnyj metod resheniya uravnenij Nav'e-Stoksa dlya rascheta mnogofaznyh techenij so svobodnoj poverhnost'yu”, Vychislitel'nye tekhnologii, 21:5 (2016), 54–76 | Zbl

[24] Efremov V. R., Kozelkov A. S., Kornev A. V., Kurkin A. A., Kurulin V. V., Strelets D. Y., Tarasova N. V., “Method for taking into account gravity in free-surface flow simulation”, Computational Mathematics and Mathematical Physics, 57:10 (2017), 1720–1733 | DOI | DOI | MR | Zbl

[25] Volkov K. N., Deryugin Yu. N., Emel'yanov V. N. i dr., Metody uskoreniya gazodinamicheskih raschetov na nestrukturirovannyh setkah, Fizmatlit, M., 2013

[26] Kozelkov A. S., Kurulin V. V., Tyatyushkina E. S., Kurkin A. A., Legchanov M. A., Tsibereva Y. A., “Investigation of the application of RANS turbulence models to the calculation of nonisothermal low-Prandtl-number flows”, Fluid Dynamics, 50:4 (2015), 501–513 | DOI | MR | Zbl

[27] Kozelkov A. S., Kurkin A. A., Krutyakova O. L., Kurulin V. V., Tyatyushkina E. S., “Zonal RANS-LES approach based on an algebraic reynolds stress model”, Fluid Dynamics, 50:5 (2015), 621–628 | DOI | MR | Zbl

[28] Kozelkov A. S., Kurkin A. A., Pelinovsky E. N., Kurulin V. V., Tyatyushkina E. S., “Numerical modeling of the 2013 meteorite entry in Lake Chebarkul, Russia”, Nat. Hazards Earth Syst. Sci., 17 (2017), 671–683 | DOI

[29] Kozelkov A. S., Kurkin A. A., Pelinovsky E. N., et al., “Landslide-type tsunami modelling based on the Navier-Stokes Equations”, Science of Tsunami Hazards, 35:3 (2016), 106–144

[30] Betelin V. B., Shagaliev R. M., Aksenov S. V., et al., “Mathematical simulation of hydrogen- oxygen combustion in rocket engines using LOGOS code”, Acta Astronautica, 96:1 (2014), 53–64 | DOI

[31] Shlihting G., Teoriya pogranichnogo sloya, Nauka, M., 1974

[32] Aristoff J. M., Truscott T. T., Techet A. H., Bush J. W. M., “The water entry of decelerating spheres”, Phys. Fluids, 22:3 (2010), 032102 | DOI | Zbl

[33] Zhang A., Cao X., Ming F., Zhang Z., “Investigation on a damaged ship model sinking into water based on three dimensional SPH method”, Applied Ocean Research, 42 (2013), 24–31 | DOI