Two-grid methods for a new mixed finite element approximation of semilinear parabolic integro-differential equations
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 2, pp. 167-185

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we present a two-grid scheme for a semilinear parabolic integro-differential equation using a new mixed finite element method. The gradient for the method belongs to the space of square integrable functions instead of the classical $H(\mathrm{div};\Omega)$ space. The velocity and the pressure are approximated by a $P_0^2-P_1$ pair which satisfies an inf-sup condition. Firstly, we solve the original nonlinear problem on the coarse grid in our two-grid scheme. Then, to linearize the discretized equations, we use Newton’s iteration on the fine grid twice. It is shown that the algorithm can achieve an asymptotically optimal approximation as long as the mesh sizes satisfy $h=\mathcal{O}(H^6|\ln H|^2)$. As a result, solving such a large class of nonlinear equations will not be much more difficult than solving one linearized equation. Finally, a numerical experiment is provided to verify the theoretical results of the two-grid method.
@article{SJVM_2019_22_2_a4,
     author = {C. Liu and T. Hou},
     title = {Two-grid methods for a new mixed finite element approximation of semilinear parabolic integro-differential equations},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {167--185},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2019_22_2_a4/}
}
TY  - JOUR
AU  - C. Liu
AU  - T. Hou
TI  - Two-grid methods for a new mixed finite element approximation of semilinear parabolic integro-differential equations
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2019
SP  - 167
EP  - 185
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2019_22_2_a4/
LA  - ru
ID  - SJVM_2019_22_2_a4
ER  - 
%0 Journal Article
%A C. Liu
%A T. Hou
%T Two-grid methods for a new mixed finite element approximation of semilinear parabolic integro-differential equations
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2019
%P 167-185
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2019_22_2_a4/
%G ru
%F SJVM_2019_22_2_a4
C. Liu; T. Hou. Two-grid methods for a new mixed finite element approximation of semilinear parabolic integro-differential equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 2, pp. 167-185. http://geodesic.mathdoc.fr/item/SJVM_2019_22_2_a4/