Two-grid methods for a new mixed finite element approximation of semilinear parabolic integro-differential equations
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 2, pp. 167-185
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we present a two-grid scheme for a semilinear parabolic integro-differential equation using a new mixed finite element method. The gradient for the method belongs to the space of square integrable functions instead of the classical $H(\mathrm{div};\Omega)$ space. The velocity and the pressure are approximated by a $P_0^2-P_1$ pair which satisfies an inf-sup condition. Firstly, we solve the original nonlinear problem on the coarse grid in our two-grid scheme. Then, to linearize the discretized equations, we use Newton’s iteration on the fine grid twice. It is shown that the algorithm can achieve an asymptotically optimal approximation as long as the mesh sizes satisfy $h=\mathcal{O}(H^6|\ln H|^2)$. As a result, solving such a large class of nonlinear equations will not be much more difficult than solving one linearized equation. Finally, a numerical experiment is provided to verify the theoretical results of the two-grid method.
@article{SJVM_2019_22_2_a4,
author = {C. Liu and T. Hou},
title = {Two-grid methods for a new mixed finite element approximation of semilinear parabolic integro-differential equations},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {167--185},
publisher = {mathdoc},
volume = {22},
number = {2},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2019_22_2_a4/}
}
TY - JOUR AU - C. Liu AU - T. Hou TI - Two-grid methods for a new mixed finite element approximation of semilinear parabolic integro-differential equations JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2019 SP - 167 EP - 185 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2019_22_2_a4/ LA - ru ID - SJVM_2019_22_2_a4 ER -
%0 Journal Article %A C. Liu %A T. Hou %T Two-grid methods for a new mixed finite element approximation of semilinear parabolic integro-differential equations %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2019 %P 167-185 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2019_22_2_a4/ %G ru %F SJVM_2019_22_2_a4
C. Liu; T. Hou. Two-grid methods for a new mixed finite element approximation of semilinear parabolic integro-differential equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 2, pp. 167-185. http://geodesic.mathdoc.fr/item/SJVM_2019_22_2_a4/