Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2019_22_2_a1, author = {A. V. Kel'manov and A. V. Panasenko and V. I. Khandeev}, title = {Exact algorithms of searching for the largest size cluster in two integer 2-clustering problems}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {121--136}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2019_22_2_a1/} }
TY - JOUR AU - A. V. Kel'manov AU - A. V. Panasenko AU - V. I. Khandeev TI - Exact algorithms of searching for the largest size cluster in two integer 2-clustering problems JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2019 SP - 121 EP - 136 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2019_22_2_a1/ LA - ru ID - SJVM_2019_22_2_a1 ER -
%0 Journal Article %A A. V. Kel'manov %A A. V. Panasenko %A V. I. Khandeev %T Exact algorithms of searching for the largest size cluster in two integer 2-clustering problems %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2019 %P 121-136 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2019_22_2_a1/ %G ru %F SJVM_2019_22_2_a1
A. V. Kel'manov; A. V. Panasenko; V. I. Khandeev. Exact algorithms of searching for the largest size cluster in two integer 2-clustering problems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 2, pp. 121-136. http://geodesic.mathdoc.fr/item/SJVM_2019_22_2_a1/
[1] MacQueen J. B., “Some methods for classification and analysis of multivariate observations”, Proc. of the 5th Berkeley Symposium on Mathematical Statistics and Probability, v. 1, Univ. of California Press, Berkeley, 1967, 281–297 | MR | Zbl
[2] Rao M., “Cluster analysis and mathematical programming”, J. Amer. Stat. Assoc., 66 (1971), 622–626 | DOI | Zbl
[3] Hansen P., Jaumard B., Mladenovich N., “Minimum sum of squares clustering in a low dimensional space”, J. Classification, 15 (1998), 37–55 | DOI | MR | Zbl
[4] Hansen P., Jaumard B., “Cluster analysis and mathematical programming”, Mathematical Programming, 79 (1997), 191–215 | MR | Zbl
[5] Fisher R. A., Statistical Methods and Scientific Inference, Hafner, New York, 1956 | MR
[6] Jain A. K., “Data clustering: 50 years beyond k-means”, Pattern Recognition Letters, 31:8 (2010), 651–666 | DOI
[7] Aloise D., Deshpande A., Hansen P., Popat P., “NP-hardness of Euclidean sum-of-squares clustering”, Machine Learning, 75:2 (2009), 245–248 | DOI | Zbl
[8] Drineas P., Frieze A., Kannan R., Vempala S., Vinay V., “Clustering large graphs via the singular value decomposition”, Machine Learning, 56 (2004), 9–33 | DOI | Zbl
[9] Dolgushev A. V., Kel'manov A. V., “On the algorithmic complexity of a problem in cluster analysis”, J. of Applied and Industrial Mathematics, 5:2 (2011), 191–194 | DOI | MR
[10] Mahajan M., Nimbhorkar P., Varadarajan K., “The planar k-means problem is NP-hard”, Theoretical Computer Science, 442 (2012), 3–21 | DOI | MR
[11] Brucker P., “On the complexity of clustering problems”, Lecture Notes in Economics and Mathematical Systems, 157, 1978, 45–54 | DOI | MR | Zbl
[12] Bern M., Eppstein D., “Approximation algorithms for geometric problems”, Approximation Algorithms for NP-Hard Problems, PWS Publ., Boston, 1997, 296–345
[13] Indyk P., “A sublinear time approximation scheme for clustering in metric space”, Proc. of the 40th Ann. IEEE Symp. on Foundations of Computer Science (FOCS), 1999, 154–159 | MR
[14] de la Vega F., Kenyon C., “A randomized approximation scheme for metric max-cut”, J. of Computer and System Sciences, 63 (2001), 531–541 | DOI | MR | Zbl
[15] de la Vega F., Karpinski M., Kenyon C., Rabani Y., Electronic Colloquium on Computational Complexity (ECCC), Report No 25, 2002
[16] Hasegawa S., Imai H., Inaba M., Katoh N., Nakano J., “Efficient algorithms for variancebased k-clustering”, Proc. of the 1st Pacific Conference on Computer Graphics and Applications, Pacific Graphics'93 (Seoul, Korea), v. 1, World Scientific, River Edge, NJ, 1993, 75–89
[17] Inaba M., Katoh N., Imai H., “Applications of weighted Voronoi diagrams and randomization to variance-based k-clustering”, extended abstract, SCG'94 Proc. of the tenth annual symposium on Computational geometry (Stony Brook, NY, USA, June 6–8, 1994), ACM, New York, 1994, 332–339 | DOI
[18] Sahni S., Gonzalez T., “P-complete approximation problems”, J. of the ACM, 23 (1976), 555–566 | DOI | MR
[19] Ageev A. A., Kel'manov A. V., Pyatkin A. V., “NP-hardness of the Euclidean max-cut problem”, Doklady Mathematics, 89:3 (2014), 343–345 | DOI | MR | Zbl
[20] Ageev A. A., Kel'manov A. V., Pyatkin A. V., “Complexity of the weighted max-cut in Euclidean space”, J. of Applied and Industrial Mathematics, 8:4 (2014), 453–457 | DOI | MR | Zbl
[21] Kel'manov A. V., Pyatkin A. V., “On the complexity of a search for a subset of “similar” vectors”, Doklady Mathematics, 78:1 (2008), 574–575 | DOI | MR | Zbl
[22] Kel'manov A. V., Pyatkin A. V., “On a version of the problem of choosing a vector subset”, J. of Applied and Industrial Mathematics, 3:4 (2009), 447–455 | DOI | MR
[23] Kel'manov A. V., Pyatkin A. V., “NP-hardness of some quadratic Euclidean 2-clustering problems”, Doklady Mathematics, 92:2 (2015), 634–637 | DOI | MR | Zbl
[24] Kel'manov A. V., Pyatkin A. V., “On the complexity of some quadratic Euclidean 2-clustering problems”, Computational Mathematics and Mathematical Physics, 56:3 (2016), 491–497 | DOI | MR | Zbl
[25] Bishop C. M., Pattern Recognition and Machine Learning, Springer Science+Business Media, LLC, New York, 2006 | MR | Zbl
[26] James G., Witten D., Hastie T., Tibshirani R., An Introduction to Statistical Learning, Springer Science+Business Media, LLC, New York, 2013 | MR | Zbl
[27] Hastie T., Tibshirani R., Friedman J., The Elements of Statistical Learning, 2nd edition, Springer-Verlag, 2009 | MR | Zbl
[28] Aggarwal C. C., Data Mining: The Textbook, Springer International Publishing, 2015 | MR | Zbl
[29] Goodfellow I., Bengio Y., Courville A., Deep Learning, Adaptive Computation and Machine Learning series, The MIT Press, 2017 | MR
[30] Shirkhorshidi A. S., Aghabozorgi S., Wah T. Y., Herawan T., “Big data clustering: a review”, LNCS, 8583, 2014, 707–720
[31] Pach J., Agarwal P. K., Combinatorial Geometry, Wiley, New York, 1995 | MR | Zbl
[32] Kel'manov A. V., Khandeev V. I., “A 2-approximation polynomial algorithm for a clustering problem”, J. of Applied and Industrial Mathematics, 7:4 (2013), 515–521 | DOI | MR | Zbl
[33] Gimadi E. Kh., Kel'manov A. V., Kel'manova M. A., Khamidullin S. A., “Aposteriornoe obnaruzhenie v chislovoy posledovatel'nosti kvaziperiodicheskogo fragmenta pri zadannom chisle povtorov”, Sib. zhurn. industr. matem., 9:1 (2006), 55–74
[34] Gimadi E.Kh., Kel'manov A. V., Kel'manova M. A., Khamidullin S. A., “A posteriori detecting a quasiperiodic fragment in a numerical sequence”, Pattern Recognition and Image Analysis, 18:1 (2008), 30–42 | DOI
[35] Baburin A. E., Gimadi E.Kh., Glebov N. I., Pyatkin A. V., “The problem of finding a subset of vectors with the maximum total weight”, J. of Applied and Industrial Mathematics, 2:1 (2008), 32–38 | DOI | MR
[36] Gimadi E.Kh., Pyatkin A. V., Rykov I. A., “On polynomial solvability of some problems of a vector subset choice in a Euclidean space of fixed dimension”, J. of Applied and Industrial Mathematics, 4:1 (2010), 48–53 | DOI | MR
[37] Shenmaier V. V., “Solving some vector subset problems by Voronoi diagrams”, J. of Applied and Industrial Mathematics, 10:4 (2016), 560–566 | DOI | MR | Zbl
[38] Kel'manov A. V., Khandeev V. I., “An exact pseudopolynomial algorithm for a problem of the two-cluster partitioning of a set of vectors”, J. of Applied and Industrial Mathematics, 9:4 (2015), 497–502 | DOI | MR | Zbl
[39] Dolgushev A. V., Kel'manov A. V., “An approximation algorithm for solving a problem of cluster analysis”, J. of Applied and Industrial Mathematics, 5:4 (2011), 551–558 | DOI | MR
[40] Dolgushev A. V., Kel'manov A. V., Shenmaier V. V., “Polynomial-time approximation scheme for a problem of partitioning a finite set into two clusters”, Proc. of the Steklov Institute of Mathematics, 295, supplement 1 (2016), 47–56 | DOI | MR
[41] Kel'manov A. V., Khandeev V. I., “Fully polynomial-time approximation scheme for a special case of a quadratic Euclidean 2-clustering problem”, J. of Applied and Industrial Mathematics, 56:2 (2016), 334–341 | MR | Zbl
[42] Kel'manov A. V., Motkova A. V., Shenmaier V. V., “An approximation scheme for a weighted two-cluster partition problem”, LNCS, 10716, 2018, 323–333
[43] Kel'manov A. V., Khandeev V. I., “A randomized algorithm for two-cluster partition of a set of vectors”, Computational Mathematics and Mathematical Physics, 55:2 (2015), 330–339 | DOI | MR | Zbl
[44] Kel'manov A. V., Motkova A. V., “Polynomial-time approximation algorithm for the problem of cardinality-weighted variance-based 2-clustering with a given center”, Computational Mathematics and Mathematical Physics, 58:1 (2018), 130–136 | DOI | MR | Zbl
[45] Kel'manov A. V., Motkova A. V., “Exact pseudopolynomial algorithms for a balanced 2-clustering problem”, J. of Applied and Industrial Mathematics, 10:3 (2016), 349–355 | DOI | MR | Zbl
[46] Kel'manov A. V., Motkova A. V., “A fully polynomial-time approximation scheme for a special Case of a balanced 2-clustering problem”, LNCS, 9869, 2016, 182–192 | MR | Zbl
[47] Kel'manov A. V., Khandeev V. I., Panasenko A. V., “Randomized algorithms for some clustering problems”, Communications in Computer and Information Science, CCIS-871 (2018), 109–119 | DOI