Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2019_22_1_a6, author = {S. B. Sorokin}, title = {An efficient direct method for the numerical solution to the {Cauchy} problem for the {Laplace} equation}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {99--117}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2019_22_1_a6/} }
TY - JOUR AU - S. B. Sorokin TI - An efficient direct method for the numerical solution to the Cauchy problem for the Laplace equation JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2019 SP - 99 EP - 117 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2019_22_1_a6/ LA - ru ID - SJVM_2019_22_1_a6 ER -
%0 Journal Article %A S. B. Sorokin %T An efficient direct method for the numerical solution to the Cauchy problem for the Laplace equation %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2019 %P 99-117 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2019_22_1_a6/ %G ru %F SJVM_2019_22_1_a6
S. B. Sorokin. An efficient direct method for the numerical solution to the Cauchy problem for the Laplace equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 1, pp. 99-117. http://geodesic.mathdoc.fr/item/SJVM_2019_22_1_a6/
[1] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979
[2] Lavrent'ev M. M., “O zadache Koshi dlya uravneniya Laplasa”, Izv. AN SSSR. Ser. matem., 20:6 (1956), 819–842 | Zbl
[3] Mukanova B., “Numerical reconstruction of unknown boundary data in the Cauchy problem for Laplace's equation”, Inverse Problems in Science and Engineering, 21:8 (2012), 1255–1267 | DOI | MR
[4] Mukanova B., Maussumbekova S., Kulbay M., “Solving of the regularized inverse problem for elliptic equations in cylindrical coordinates: analytical formulas”, J. of Appl. Mechanics and Materials, 799–800 (2015), 693–697 | DOI
[5] Kabanikhin S. I., Bektemesov M. A., Ayapbergenova A. T., Nechaev D. V., “Optimization methods of solving continuation problems”, Computational technologies, 9, special iss. (2004), 49–60
[6] Karchevsky A. L., “Reformulation of an inverse problem statement that reduces computational costs”, Eurasian J. of Mathematical and Computer Application, 1:2 (2013), 4–20 | MR
[7] Cheng J., Hon Y. C., Wei T., Yamamoto M., “Numerical computation of a Cauchy problem for Laplace's equation”, ZAMM, 81:10 (2001), 665–674 | 3.0.CO;2-V class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[8] Kabanikhin S. I., Shishlenin M. A., Nurseitov D. B., Nurseitova A. T., Kasenov S. E., “Comparative analysis of methods for regularizing an initial boundary value problem for the Helmholtz equation”, J. of Appl. Math., 2014, special iss. (2014), 1–7 | DOI | MR
[9] Kabanikhin S. I., Karchevsky A. L., “Method for solving the Cauchy problem for an elliptic equation”, J. of Inverse and Ill-posed Problems, 3:1 (1995), 21–46 | DOI | MR | Zbl
[10] Kabanikhin S. I., Obratnye i nekorrektnye zadachi, Sibirskoe nauchnoe izdatel'stvo, Novosibirsk, 2009
[11] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravneniy, Nauka, M., 1978
[12] Samarskii A. A., Andreev V. B., Raznostnye metody dlya ellipticheskikh uravneniy, Nauka, M., 1979
[13] Liu C.-S., “An analytical method for the inverse Cauchy problem of Laplace equation in a rectangular plate”, J. of Mechanics, 27:4 (2011), 575–584 | DOI
[14] Lavrent'ev M. M., “Ob integral'nykh uravneniyakh pervogo roda”, DAN SSSR, 127:1 (1959), 31–33 | Zbl
[15] Lavrent'ev M. M., Savel'ev L. Ya., Teoriya operatorov i nekorrektnye zadachi, 2-e izd., pererab. i dopoln., Izd-vo In-ta matematiki, Novosibirsk, 2010