An efficient direct method for the numerical solution to the Cauchy problem for the Laplace equation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 1, pp. 99-117
Voir la notice de l'article provenant de la source Math-Net.Ru
One of widespread approaches to solving the Cauchy problem for the Laplace equation is to reduce it to the inverse problem. As a rule, an iterative procedure to solve the latter is used. In this study, an efficient direct method for the numerical solution of the inverse problem in the rectangular form is described. The main idea is based on the expansion of the desired solution with respect to a basis consisting of eigenfunctions of a difference analogue of the Laplace operator.
@article{SJVM_2019_22_1_a6,
author = {S. B. Sorokin},
title = {An efficient direct method for the numerical solution to the {Cauchy} problem for the {Laplace} equation},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {99--117},
publisher = {mathdoc},
volume = {22},
number = {1},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2019_22_1_a6/}
}
TY - JOUR AU - S. B. Sorokin TI - An efficient direct method for the numerical solution to the Cauchy problem for the Laplace equation JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2019 SP - 99 EP - 117 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2019_22_1_a6/ LA - ru ID - SJVM_2019_22_1_a6 ER -
%0 Journal Article %A S. B. Sorokin %T An efficient direct method for the numerical solution to the Cauchy problem for the Laplace equation %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2019 %P 99-117 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2019_22_1_a6/ %G ru %F SJVM_2019_22_1_a6
S. B. Sorokin. An efficient direct method for the numerical solution to the Cauchy problem for the Laplace equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 1, pp. 99-117. http://geodesic.mathdoc.fr/item/SJVM_2019_22_1_a6/