An efficient direct method for the numerical solution to the Cauchy problem for the Laplace equation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 1, pp. 99-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

One of widespread approaches to solving the Cauchy problem for the Laplace equation is to reduce it to the inverse problem. As a rule, an iterative procedure to solve the latter is used. In this study, an efficient direct method for the numerical solution of the inverse problem in the rectangular form is described. The main idea is based on the expansion of the desired solution with respect to a basis consisting of eigenfunctions of a difference analogue of the Laplace operator.
@article{SJVM_2019_22_1_a6,
     author = {S. B. Sorokin},
     title = {An efficient direct method for the numerical solution to the {Cauchy} problem for the {Laplace} equation},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {99--117},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2019_22_1_a6/}
}
TY  - JOUR
AU  - S. B. Sorokin
TI  - An efficient direct method for the numerical solution to the Cauchy problem for the Laplace equation
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2019
SP  - 99
EP  - 117
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2019_22_1_a6/
LA  - ru
ID  - SJVM_2019_22_1_a6
ER  - 
%0 Journal Article
%A S. B. Sorokin
%T An efficient direct method for the numerical solution to the Cauchy problem for the Laplace equation
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2019
%P 99-117
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2019_22_1_a6/
%G ru
%F SJVM_2019_22_1_a6
S. B. Sorokin. An efficient direct method for the numerical solution to the Cauchy problem for the Laplace equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 1, pp. 99-117. http://geodesic.mathdoc.fr/item/SJVM_2019_22_1_a6/

[1] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979

[2] Lavrent'ev M. M., “O zadache Koshi dlya uravneniya Laplasa”, Izv. AN SSSR. Ser. matem., 20:6 (1956), 819–842 | Zbl

[3] Mukanova B., “Numerical reconstruction of unknown boundary data in the Cauchy problem for Laplace's equation”, Inverse Problems in Science and Engineering, 21:8 (2012), 1255–1267 | DOI | MR

[4] Mukanova B., Maussumbekova S., Kulbay M., “Solving of the regularized inverse problem for elliptic equations in cylindrical coordinates: analytical formulas”, J. of Appl. Mechanics and Materials, 799–800 (2015), 693–697 | DOI

[5] Kabanikhin S. I., Bektemesov M. A., Ayapbergenova A. T., Nechaev D. V., “Optimization methods of solving continuation problems”, Computational technologies, 9, special iss. (2004), 49–60

[6] Karchevsky A. L., “Reformulation of an inverse problem statement that reduces computational costs”, Eurasian J. of Mathematical and Computer Application, 1:2 (2013), 4–20 | MR

[7] Cheng J., Hon Y. C., Wei T., Yamamoto M., “Numerical computation of a Cauchy problem for Laplace's equation”, ZAMM, 81:10 (2001), 665–674 | 3.0.CO;2-V class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[8] Kabanikhin S. I., Shishlenin M. A., Nurseitov D. B., Nurseitova A. T., Kasenov S. E., “Comparative analysis of methods for regularizing an initial boundary value problem for the Helmholtz equation”, J. of Appl. Math., 2014, special iss. (2014), 1–7 | DOI | MR

[9] Kabanikhin S. I., Karchevsky A. L., “Method for solving the Cauchy problem for an elliptic equation”, J. of Inverse and Ill-posed Problems, 3:1 (1995), 21–46 | DOI | MR | Zbl

[10] Kabanikhin S. I., Obratnye i nekorrektnye zadachi, Sibirskoe nauchnoe izdatel'stvo, Novosibirsk, 2009

[11] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravneniy, Nauka, M., 1978

[12] Samarskii A. A., Andreev V. B., Raznostnye metody dlya ellipticheskikh uravneniy, Nauka, M., 1979

[13] Liu C.-S., “An analytical method for the inverse Cauchy problem of Laplace equation in a rectangular plate”, J. of Mechanics, 27:4 (2011), 575–584 | DOI

[14] Lavrent'ev M. M., “Ob integral'nykh uravneniyakh pervogo roda”, DAN SSSR, 127:1 (1959), 31–33 | Zbl

[15] Lavrent'ev M. M., Savel'ev L. Ya., Teoriya operatorov i nekorrektnye zadachi, 2-e izd., pererab. i dopoln., Izd-vo In-ta matematiki, Novosibirsk, 2010