@article{SJVM_2019_22_1_a5,
author = {A. I. Sidikova},
title = {The study of an inverse boundary problem for the heat conduction equation},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {81--98},
year = {2019},
volume = {22},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2019_22_1_a5/}
}
A. I. Sidikova. The study of an inverse boundary problem for the heat conduction equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 1, pp. 81-98. http://geodesic.mathdoc.fr/item/SJVM_2019_22_1_a5/
[1] Alifanov O. M., Obratnye zadachi teploobmena, Mashinostroenie, M., 1988
[2] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979
[3] Glasko V. B., Kulik N. I., Shklyarov I. N., Tikhonov A. N., “Ob odnoy obratnoy zadache teploprovodnosti”, Zhurn. vychisl. matem. i mat. fiziki, 19:3 (1979), 768–774 | Zbl
[4] Lavrent'ev M. M., Romanov V. G., Shishatsky S. P., Ill-posed problems of mathematical physics and analysis, Nauka Publ., M., 1980 | MR | Zbl
[5] Ivanov V. K., Vasin V. V., Tanana V. P., Theory of Linear Ill-Posed Problems and its Applications, VSP, The Netherlands, 2002 | MR | Zbl
[6] Bakushinsky A. B., Goncharsky A. V., Nekorrektnye zadachi. Chislennye metody i prilozheniya, Fizmatlit, M., 1989
[7] Kabanikhin S. I., Inverse and ill-posed problems, Siberian Academic Press, Novosibirsk, 2009
[8] Belonosov A. S., Shishlenin M. A., “Zadacha prodolzheniya dlya parabolicheskogo uravneniya s dannymi na chasti granicy”, Sib. elektron. matem. izv., 11 (2014), 22–34
[9] Denisov A. M., Vvedenie v teoriyu obratnykh zadach, Izd-vo MGU, M., 1994
[10] Kabanikhin S. I., Hasanov A., Penenko A. V., “A gradient descent method for solving an inverse coefficient heat conduction problem”, Numerical Analysis and Applications, 1:1 (2008), 34–45 | DOI | Zbl | Zbl
[11] Vasin V. V., Ageev A. L., Nekorrektnye zadachi s apriornoy informaciey, UIF “Nauka”, Ekaterinburg, 1993
[12] Yagola A. G., Van Yanfey, Stepanova I. E., Titarenko V. N., Obratnye zadachi i metody ikh resheniya. Prilozheniya k geofizike, BINOM, M., 2014
[13] Tanana V. P., “Ob optimal'nosti po poryadku metoda proekcionnoy regulyarizacii pri reshenii obratnykh zadach”, Sib. zhurn. industr. matem., 7:2 (2004), 117–132 | Zbl
[14] Tanana V. P., Bredikhina A. B., Kamaltdinova T. S., “Ob ocenke pogreshnosti priblizhennogo resheniya odnoy obratnoy zadachi v klasse kusochno-gladkikh funkciy”, Tr. IMM URO RAN, 18, no. 1, 2012, 281–288
[15] Tanana V. P., Rudakova T. N., “The optimum of the M. M. Lavrent'ev method”, J. of Inverse and Ill-Posed Problems, 18:8 (2011), 935–944 | DOI | MR