The study of an inverse boundary problem for the heat conduction equation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 1, pp. 81-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with investigating and solving the mixed initial boundary value problem for the heat conduction equation. The statement of the problem includes the three intervals: the first one (from $0\to T_1$) describes heating the combustion chamber, the second (from $T_1\to T_2$) — cooling the chamber and a slower cooling of its wall. Finally, the third interval describes natural cooling of the chamber wall when the chamber has the temperature coinciding with that of environment. The validity of the application of the Fourier transform with respect to this problem has been proved. This made possible to transform the governing equation to the ordinary differential equation. By using the resulting equation, the inverse boundary value problem for the heat conduction equation by applying the nonlinear method of projection regularization was solved and the error of approximate solution was obtained.
@article{SJVM_2019_22_1_a5,
     author = {A. I. Sidikova},
     title = {The study of an inverse boundary problem for the heat conduction equation},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {81--98},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2019_22_1_a5/}
}
TY  - JOUR
AU  - A. I. Sidikova
TI  - The study of an inverse boundary problem for the heat conduction equation
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2019
SP  - 81
EP  - 98
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2019_22_1_a5/
LA  - ru
ID  - SJVM_2019_22_1_a5
ER  - 
%0 Journal Article
%A A. I. Sidikova
%T The study of an inverse boundary problem for the heat conduction equation
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2019
%P 81-98
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2019_22_1_a5/
%G ru
%F SJVM_2019_22_1_a5
A. I. Sidikova. The study of an inverse boundary problem for the heat conduction equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 1, pp. 81-98. http://geodesic.mathdoc.fr/item/SJVM_2019_22_1_a5/

[1] Alifanov O. M., Obratnye zadachi teploobmena, Mashinostroenie, M., 1988

[2] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979

[3] Glasko V. B., Kulik N. I., Shklyarov I. N., Tikhonov A. N., “Ob odnoy obratnoy zadache teploprovodnosti”, Zhurn. vychisl. matem. i mat. fiziki, 19:3 (1979), 768–774 | Zbl

[4] Lavrent'ev M. M., Romanov V. G., Shishatsky S. P., Ill-posed problems of mathematical physics and analysis, Nauka Publ., M., 1980 | MR | Zbl

[5] Ivanov V. K., Vasin V. V., Tanana V. P., Theory of Linear Ill-Posed Problems and its Applications, VSP, The Netherlands, 2002 | MR | Zbl

[6] Bakushinsky A. B., Goncharsky A. V., Nekorrektnye zadachi. Chislennye metody i prilozheniya, Fizmatlit, M., 1989

[7] Kabanikhin S. I., Inverse and ill-posed problems, Siberian Academic Press, Novosibirsk, 2009

[8] Belonosov A. S., Shishlenin M. A., “Zadacha prodolzheniya dlya parabolicheskogo uravneniya s dannymi na chasti granicy”, Sib. elektron. matem. izv., 11 (2014), 22–34

[9] Denisov A. M., Vvedenie v teoriyu obratnykh zadach, Izd-vo MGU, M., 1994

[10] Kabanikhin S. I., Hasanov A., Penenko A. V., “A gradient descent method for solving an inverse coefficient heat conduction problem”, Numerical Analysis and Applications, 1:1 (2008), 34–45 | DOI | Zbl | Zbl

[11] Vasin V. V., Ageev A. L., Nekorrektnye zadachi s apriornoy informaciey, UIF “Nauka”, Ekaterinburg, 1993

[12] Yagola A. G., Van Yanfey, Stepanova I. E., Titarenko V. N., Obratnye zadachi i metody ikh resheniya. Prilozheniya k geofizike, BINOM, M., 2014

[13] Tanana V. P., “Ob optimal'nosti po poryadku metoda proekcionnoy regulyarizacii pri reshenii obratnykh zadach”, Sib. zhurn. industr. matem., 7:2 (2004), 117–132 | Zbl

[14] Tanana V. P., Bredikhina A. B., Kamaltdinova T. S., “Ob ocenke pogreshnosti priblizhennogo resheniya odnoy obratnoy zadachi v klasse kusochno-gladkikh funkciy”, Tr. IMM URO RAN, 18, no. 1, 2012, 281–288

[15] Tanana V. P., Rudakova T. N., “The optimum of the M. M. Lavrent'ev method”, J. of Inverse and Ill-Posed Problems, 18:8 (2011), 935–944 | DOI | MR