Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2019_22_1_a4, author = {A. V. Penenko}, title = {The {Newton--Kantorovich} method in inverse source problems for production-destruction models with time series-type measurement data}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {57--79}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2019_22_1_a4/} }
TY - JOUR AU - A. V. Penenko TI - The Newton--Kantorovich method in inverse source problems for production-destruction models with time series-type measurement data JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2019 SP - 57 EP - 79 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2019_22_1_a4/ LA - ru ID - SJVM_2019_22_1_a4 ER -
%0 Journal Article %A A. V. Penenko %T The Newton--Kantorovich method in inverse source problems for production-destruction models with time series-type measurement data %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2019 %P 57-79 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2019_22_1_a4/ %G ru %F SJVM_2019_22_1_a4
A. V. Penenko. The Newton--Kantorovich method in inverse source problems for production-destruction models with time series-type measurement data. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 1, pp. 57-79. http://geodesic.mathdoc.fr/item/SJVM_2019_22_1_a4/
[1] Vasiliev F. P., Metody resheniya ekstremal'nykh zadach, Nauka, M., 1981
[2] Alifanov O. M., Artiukhin E. A., Rumiantsev S. V., Extreme Methods for Solving Ill-Posed Problems With Applications to Inverse Heat Transfer Problems, Begell House, 1995 | MR | Zbl
[3] Lions J., Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971 | MR | Zbl
[4] Shutyaev V. P., “The properties of control operators in one problem on data control and algorithms for its solution”, Mathematical Notes, 57:6 (1995), 668–671 | DOI | MR | Zbl
[5] Marchuk G. I., “O postanovke nekotorykh obratnykh zadach”, DAN SSSR, 156:3 (1964), 503–506 | Zbl
[6] Marchuk G. I., Adjoint Equations and Analysis of Complex Systems, Springer, Netherlands, 1995 | MR
[7] Issartel J.-P., “Rebuilding sources of linear tracers after atmospheric concentration measurements”, Atmospheric Chemistry and Physics, 3:6 (2003), 2111–2125 | DOI
[8] Issartel J.-P., “Emergence of a tracer source from air concentration measurements, a new strategy for linear assimilation”, Atmospheric Chemistry and Physics, 5:1 (2005), 249–273 | DOI
[9] Ustinov E. A., “Adjoint sensitivity analysis of atmospheric dynamics: Application to the case of multiple observables”, J. of the Atmospheric Sciences, 58:21 (2001), 3340–3348 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[10] Bennett A. F., Inverse Methods in Physical Oceanography, Cambridge Monographs on Mechanics, Cambridge University Press, Cambridge, 1992 | MR | Zbl
[11] Iglesias M. A., Dawson C., “An iterative representer-based scheme for data inversion in reservoir modeling C. Dawson”, Inverse Problems, 25:3 (2009), 1–34 | DOI | MR
[12] Le Dimet F. X., Souopgui I., Titaud O. et al., “Toward the assimilation of images”, Nonlinear Processes in Geophysics, 22:1 (2015), 15–32 http://www.nonlin-processes-geophys.net/22/15/2015/npg-22-15-2015.pdf | DOI
[13] Penenko A. V., “O reshenii obratnoy koefficientnoy zadachi teploprovodnosti metodom proekcii gradienta”, Sb. Tr. Pervoy mezhdunarodnoy molodezhnoy shkoly-konferencii “Teoriya i chislennye metody resheniya obratnykh i nekorrektnykh zadach”. Chast' I, Sibirskie elektronnye matematicheskie izvestiya, 7 (2010), C.178–C.198
[14] Penenko A. V., Nikolaev S. V., Golushko S. K. i dr., “Chislennye algoritmy identifikacii koefficienta diffuzii v zadachakh tkanevoy inzhenerii”, Mat. biol. i bioinf., 11:2 (2016), 426–444 | DOI
[15] Goris N., Elbern H., “Singular vector decomposition for sensitivity analyses of tropospheric chemical scenarios”, Atmospheric Chemistry and Physics, 13:9 (2013), 5063–5087 | DOI
[16] Kantorovich L. V., Akilov G. P., Functional Analysis, Pergamon Press, 1982 | MR | Zbl
[17] Cheverda V. A., “R-pseudoinverses for compact operators in Hilbert spaces: existence and stability”, J. of Inverse and Ill-Posed Problems, 3:2 (1995), 131–148 | DOI | MR | Zbl
[18] Argyros I. K., “Local convergence theorems of Newton's method for nonlinear equations using outer or generalized inverses”, Czechoslovak Mathematical Journal, 50:3 (2000), 603–614 | DOI | MR | Zbl
[19] Penenko A. V., “Consistent numerical schemes for solving nonlinear inverse source problems with gradient-type algorithms and Newton–Kantorovich methods”, Numerical Analysis and Applications, 11:1 (2018), 73–88 | DOI | MR | Zbl
[20] Zhang H., Linford J. C., Sandu A., Sander R., “Chemical mechanism solvers in air quality models”, Atmosphere, 2:3 (2011), 510–532 | DOI
[21] Vainikko G. M., Veretennikov A. Yu., Iteracionnye procedury v nekorrektnykh zadachakh, Nauka, M., 1986
[22] GNU Scientific Library Reference Manual Edition 2.2.1, for GSL Version 2.2.1, , 2009 https://www.gnu.org/software/gsl/manual/html_node/index_old.html
[23] Stockwell W. R., Goliff W. S., “Comment on “simulation of a reacting pollutant puff using an adaptive grid algorithm” by R. K. Srivastava et al.”, J. of Geophysical Research, 107:D22 (2002), 4643–4650 | DOI
[24] Visscher A. De., Air Dispersion Modeling: Foundations and Applications, John Wiley Sons Inc, 2013
[25] Shapiro B., xCellerator User's Guide, , 2012 http://xlr8r.info/usersguide/index.html
[26] Bocquet M., Elbern H., Eskes H. et al., “Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models”, Atmospheric Chemistry and Physics Discussions, 14:23 (2014), 32233–32323 | DOI
[27] Schaap M., Roemer M., Sauter F., Boersen G., Timmermans R., Builtjes P. G. H., Lotos-euros documentation, techreport: B/297/TNO report, 2005