Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2019_22_1_a3, author = {V. D. Liseikin and V. I. Paasonen}, title = {Compact difference schemes and layer-resolving grids for the numerical modeling of problems with boundary and interior layers}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {41--56}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2019_22_1_a3/} }
TY - JOUR AU - V. D. Liseikin AU - V. I. Paasonen TI - Compact difference schemes and layer-resolving grids for the numerical modeling of problems with boundary and interior layers JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2019 SP - 41 EP - 56 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2019_22_1_a3/ LA - ru ID - SJVM_2019_22_1_a3 ER -
%0 Journal Article %A V. D. Liseikin %A V. I. Paasonen %T Compact difference schemes and layer-resolving grids for the numerical modeling of problems with boundary and interior layers %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2019 %P 41-56 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2019_22_1_a3/ %G ru %F SJVM_2019_22_1_a3
V. D. Liseikin; V. I. Paasonen. Compact difference schemes and layer-resolving grids for the numerical modeling of problems with boundary and interior layers. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 1, pp. 41-56. http://geodesic.mathdoc.fr/item/SJVM_2019_22_1_a3/
[1] Liseikin V. D., “Ocenki proizvodnykh resheniya differencial'nykh uravneniy s pogranichnymi i vnutrennimi sloyami”, Sibirskiy matematicheskiy zhurnal, 33:6 (1992), 106–117 | MR
[2] Liseikin V. D., Layer Resolving Grids and Transformations for Singular Perturbation Problems, VSP, Utrecht, 2001
[3] Liseikin V. D., Grid Generation Methods, Third ed., Springer, Berlin, 2017 | MR
[4] Paasonen V. I., “Kompaktnye skhemy tret'ego poryadka tochnosti na neravnomernykh adaptivnykh setkakh”, Vychislitel'nye tekhnologii, 20:2 (2015), 56–64 | Zbl
[5] Paasonen V. I., “Skhema tret'ego poryadka approksimacii na neravnomernoy setke dlya uravneniy Nav'e-Stoksa”, Vychislitel'nye tekhnologii, 5:5 (2000), 78–85 | MR | Zbl
[6] Glukhovskiy A. S., Paasonen V. I., “Kompaktnye raznostnye skhemy dlya uravneniy Nav'e-Stoksa na neravnomernykh setkakh”, Marchukovskie nauchnye chteniya 2017. Tr. Mezhdunar. konf. “Vychislitel'naya i prikladnaya matematika 2017” (25–30 iyunya 2017 g.), Izd-vo IVMiMG SO RAN, Novosibirsk, 2017, 211–217
[7] Liseikin V. D., “O chislennom reshenii uravneniy so stepennym pogranichnym sloem”, Zhurn. vychisl. matem. i mat. fiziki, 26:12 (1986), 1813–1820 | MR
[8] Bakhvalov N. S., “Ob optimizacii metodov chislennogo resheniya kraevykh zadach s pogranichnymi sloyami”, Zhurn. vychisl. matem. i mat. fiziki, 9:4 (1969), 842–859
[9] Shishkin G. I., “Raznostnaya skhema dlya singulyarno vozmushchennogo uravneniya parabolicheskogo tipa s razryvnym nachal'nym usloviem”, DAN SSSR, 37 (1988), 792–796 | Zbl
[10] Liseikin V. D., “O chislennom reshenii singulyarno vozmushchennykh uravneniy s tochkami povorota”, Zhurn. vychisl. matem. i mat. fiziki, 24:12 (1984), 1812–1818 | MR