Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2019_22_1_a2, author = {E. G. Klimova}, title = {The {Kalman} stochastic ensemble filter with transformation of perturbation ensemble}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {27--40}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2019_22_1_a2/} }
TY - JOUR AU - E. G. Klimova TI - The Kalman stochastic ensemble filter with transformation of perturbation ensemble JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2019 SP - 27 EP - 40 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2019_22_1_a2/ LA - ru ID - SJVM_2019_22_1_a2 ER -
E. G. Klimova. The Kalman stochastic ensemble filter with transformation of perturbation ensemble. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 1, pp. 27-40. http://geodesic.mathdoc.fr/item/SJVM_2019_22_1_a2/
[1] Bellman R., Introduction to matrix analysis, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1960 | MR | Zbl
[2] Zelenkov G. A., Zubov N. V., “O granicakh spektra matricy lineynogo operatora v unitarnom prostranstve”, Matematika. Komp'yuter. Obrazovanie, Sb. tr. XIV Mezhdunar. konf., v. 2, ed. G. Yu. Riznichenko, Nauchno-izdatel'skiy centr “Regulyarnaya i khaotichnaya dinamika”, Izhevsk, 2007, 34–41
[3] Klimova E. G., “A data assimilation technique based on the pi-algorithm”, Russian Meteorology and Hydrology, 33 (2008), 143–150 | DOI
[4] Lancaster P., Theory of Matrices, Academic Press, NY, 1969 | MR | Zbl
[5] Bjorck A., Hammarling S., “A Schur method for the square root of a matrix”, Linear algebra and its applications, 52/53 (1983), 127–140 | DOI | MR
[6] Burgers G., Van Leeuwen P. J., Evensen G., “Analysis scheme in the ensemble Kalman filter”, Monthly Weather Review, 126 (1998), 1719–1724 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[7] Evensen G., “Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics”, J. Geophysical Research, 99 (1994), 10143–1016 | DOI
[8] Evensen G., “The ensemble Kalman filter: theoretical formulation and practical implementation”, Ocean Dynamics, 53 (2003), 343–367 | DOI
[9] Evensen G., Data Assimilation. The Ensemble Kalman Filter, Spriger-Verlag, Berlin–Heideberg, 2009 | MR
[10] Higham N. J., “Computing real square roots of real matrix”, Linear algebra and its applications, 88/89 (1987), 404–430 | MR
[11] Hodyss D., Campbell W. F., “Square root and perturbed observation ensemble generation techniques in Kalman and quadratic ensemble filtering algorithms”, Monthly Weather Review, 141 (2013), 2561–2573 | DOI
[12] Houtekamer P. L., Mitchell H. L., “Ensemble Kalman filtering”, Quarterly J. of the Royal Meteorological Society, 131 (2005), 1–23 | DOI | MR
[13] Houtekamer H. L., Zhang F., “Review of the ensemble Kalman filter for atmospheric data assimilation”, Monthly Weather Review, 144 (2016), 4489–4532 | DOI
[14] Hunt B. R., Kostelich E. J., Szunyogh I., “Efficient data assimilation for spatiotemporal chaos: a local ensemble transform Kalman filter”, Physica D, 230 (2007), 112–126 | DOI | MR | Zbl
[15] Jazwinski A. H., Stochastic Processes and Filtering Theory, Academic Press, New York, 1970 | Zbl
[16] Kalnay E., Atmospheric Modeling, Data Assimilation and Predictability, Cambridge Univ. Press, 2002
[17] Klimova E., “A suboptimal data assimilation algorithm based on the ensemble Kalman filter”, Quarterly J. of the Royal Meteorological Society, 138 (2012), 2079–2085 | DOI
[18] Lawson G. A., Hanson J. A., “Implications of stochastic and deterministic filters as ensemblebased data assimilation methods in varying regimes of error growth”, Monthly Weather Review, 132 (2004), 1966–1981 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[19] Lei J., Bickel P., Shyder C., “Comparison of ensemble Kalman filters under nongaussianity”, Monthly Weather Review, 138 (2010), 1293–1306 | DOI
[20] Lorenz E. N., Emanuel K. A., “Optimal sites for supplementary weather observations: simulation with a small model”, J. of the Atmospheric Sciences, 55 (1998), 399–414 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[21] Sakov P., Oke P. R., “Implication of the form of the ensemble transformation in the ensemble square root filters”, Monthly Weather Review, 136 (2008), 1042–1053 | DOI
[22] Whitaker J. S., Hamill T. M., “Ensemble data assimilation without perturbed observations”, Monthly Weather Review, 130 (2002), 1913–1924 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI