The Kalman stochastic ensemble filter with transformation of perturbation ensemble
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 1, pp. 27-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Kalman filter algorithm is currently one of the most popular approaches to solving the data assimilation problem. The major line of the application of the Kalman filter to the data assimilation is the ensemble approach. In this paper, we propose a version of the Kalman stochastic ensemble filter. In the algorithm presented the ensemble perturbations analysis is attained by means of transforming an ensemble of forecast perturbations. The analysis step is made only for a mean value. Thus, the ensemble $\pi$-algorithm is based on the advantages of the stochastic filter and the efficiency and locality of the square root filters. The numeral method of the ensemble $\pi$-algorithm realization is proposed, the applicability of this method has been proved. This algorithm is implemented for the problem in the three-dimensional domain. The results of the numeral experiments with the model data for estimating the efficiency of the offered numeral algorithm are presented. The comparative analysis of the root-mean-square error behavior of the ensemble $\pi$-algorithm and the Kalman ensemble filter by means of the numeral experiments with a one-dimensional Lorentz model is made.
@article{SJVM_2019_22_1_a2,
     author = {E. G. Klimova},
     title = {The {Kalman} stochastic ensemble filter with transformation of perturbation ensemble},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {27--40},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2019_22_1_a2/}
}
TY  - JOUR
AU  - E. G. Klimova
TI  - The Kalman stochastic ensemble filter with transformation of perturbation ensemble
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2019
SP  - 27
EP  - 40
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2019_22_1_a2/
LA  - ru
ID  - SJVM_2019_22_1_a2
ER  - 
%0 Journal Article
%A E. G. Klimova
%T The Kalman stochastic ensemble filter with transformation of perturbation ensemble
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2019
%P 27-40
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2019_22_1_a2/
%G ru
%F SJVM_2019_22_1_a2
E. G. Klimova. The Kalman stochastic ensemble filter with transformation of perturbation ensemble. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 1, pp. 27-40. http://geodesic.mathdoc.fr/item/SJVM_2019_22_1_a2/

[1] Bellman R., Introduction to matrix analysis, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1960 | MR | Zbl

[2] Zelenkov G. A., Zubov N. V., “O granicakh spektra matricy lineynogo operatora v unitarnom prostranstve”, Matematika. Komp'yuter. Obrazovanie, Sb. tr. XIV Mezhdunar. konf., v. 2, ed. G. Yu. Riznichenko, Nauchno-izdatel'skiy centr “Regulyarnaya i khaotichnaya dinamika”, Izhevsk, 2007, 34–41

[3] Klimova E. G., “A data assimilation technique based on the pi-algorithm”, Russian Meteorology and Hydrology, 33 (2008), 143–150 | DOI

[4] Lancaster P., Theory of Matrices, Academic Press, NY, 1969 | MR | Zbl

[5] Bjorck A., Hammarling S., “A Schur method for the square root of a matrix”, Linear algebra and its applications, 52/53 (1983), 127–140 | DOI | MR

[6] Burgers G., Van Leeuwen P. J., Evensen G., “Analysis scheme in the ensemble Kalman filter”, Monthly Weather Review, 126 (1998), 1719–1724 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[7] Evensen G., “Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics”, J. Geophysical Research, 99 (1994), 10143–1016 | DOI

[8] Evensen G., “The ensemble Kalman filter: theoretical formulation and practical implementation”, Ocean Dynamics, 53 (2003), 343–367 | DOI

[9] Evensen G., Data Assimilation. The Ensemble Kalman Filter, Spriger-Verlag, Berlin–Heideberg, 2009 | MR

[10] Higham N. J., “Computing real square roots of real matrix”, Linear algebra and its applications, 88/89 (1987), 404–430 | MR

[11] Hodyss D., Campbell W. F., “Square root and perturbed observation ensemble generation techniques in Kalman and quadratic ensemble filtering algorithms”, Monthly Weather Review, 141 (2013), 2561–2573 | DOI

[12] Houtekamer P. L., Mitchell H. L., “Ensemble Kalman filtering”, Quarterly J. of the Royal Meteorological Society, 131 (2005), 1–23 | DOI | MR

[13] Houtekamer H. L., Zhang F., “Review of the ensemble Kalman filter for atmospheric data assimilation”, Monthly Weather Review, 144 (2016), 4489–4532 | DOI

[14] Hunt B. R., Kostelich E. J., Szunyogh I., “Efficient data assimilation for spatiotemporal chaos: a local ensemble transform Kalman filter”, Physica D, 230 (2007), 112–126 | DOI | MR | Zbl

[15] Jazwinski A. H., Stochastic Processes and Filtering Theory, Academic Press, New York, 1970 | Zbl

[16] Kalnay E., Atmospheric Modeling, Data Assimilation and Predictability, Cambridge Univ. Press, 2002

[17] Klimova E., “A suboptimal data assimilation algorithm based on the ensemble Kalman filter”, Quarterly J. of the Royal Meteorological Society, 138 (2012), 2079–2085 | DOI

[18] Lawson G. A., Hanson J. A., “Implications of stochastic and deterministic filters as ensemblebased data assimilation methods in varying regimes of error growth”, Monthly Weather Review, 132 (2004), 1966–1981 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[19] Lei J., Bickel P., Shyder C., “Comparison of ensemble Kalman filters under nongaussianity”, Monthly Weather Review, 138 (2010), 1293–1306 | DOI

[20] Lorenz E. N., Emanuel K. A., “Optimal sites for supplementary weather observations: simulation with a small model”, J. of the Atmospheric Sciences, 55 (1998), 399–414 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[21] Sakov P., Oke P. R., “Implication of the form of the ensemble transformation in the ensemble square root filters”, Monthly Weather Review, 136 (2008), 1042–1053 | DOI

[22] Whitaker J. S., Hamill T. M., “Ensemble data assimilation without perturbed observations”, Monthly Weather Review, 130 (2002), 1913–1924 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI