On the local convergence of modified Homeier-like method in Banach spaces
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 4, pp. 419-433
Voir la notice de l'article provenant de la source Math-Net.Ru
The aim of this article is to investigate the local convergence analysis of the multi-step Homeier-like approach in order to approximate the solution of nonlinear equations in Banach spaces, which fulfilled the Lipschitz as well as Hölder continuity condition. The Hölder condition is more relaxer than Lipschitz condition. Also, the existence and uniqueness theorem has been derived and found their error bounds. Numerical examples are available to appear the importance of theoretical discussions.
@article{SJVM_2018_21_4_a5,
author = {B. Panday and J. P. Jaiswal},
title = {On the local convergence of modified {Homeier-like} method in {Banach} spaces},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {419--433},
publisher = {mathdoc},
volume = {21},
number = {4},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2018_21_4_a5/}
}
TY - JOUR AU - B. Panday AU - J. P. Jaiswal TI - On the local convergence of modified Homeier-like method in Banach spaces JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2018 SP - 419 EP - 433 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2018_21_4_a5/ LA - ru ID - SJVM_2018_21_4_a5 ER -
B. Panday; J. P. Jaiswal. On the local convergence of modified Homeier-like method in Banach spaces. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 4, pp. 419-433. http://geodesic.mathdoc.fr/item/SJVM_2018_21_4_a5/