Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2018_21_4_a5, author = {B. Panday and J. P. Jaiswal}, title = {On the local convergence of modified {Homeier-like} method in {Banach} spaces}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {419--433}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2018_21_4_a5/} }
TY - JOUR AU - B. Panday AU - J. P. Jaiswal TI - On the local convergence of modified Homeier-like method in Banach spaces JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2018 SP - 419 EP - 433 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2018_21_4_a5/ LA - ru ID - SJVM_2018_21_4_a5 ER -
B. Panday; J. P. Jaiswal. On the local convergence of modified Homeier-like method in Banach spaces. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 4, pp. 419-433. http://geodesic.mathdoc.fr/item/SJVM_2018_21_4_a5/
[1] Sharma J. R., Arora H., “A new family of optimal eighth order methods with dynamics for nonlinear equations”, Appl. Math. Comput., 273 (2016), 924–933 | MR
[2] Amat S., Busquier S., Plaza S., “Chaotic dynamics of a third-order Newton-type method”, J. Math. Anal. Appl., 366 (2010), 24–32 | DOI | MR | Zbl
[3] Behl R., Motsa S. S., “Geometric construction of eighth-order optimal families of Ostrowski's method”, Sci. World J., 2015 (2015), Article ID 614612 | DOI
[4] Argyros I. K., Hilout S., Computational Methods in Nonlinear Analysis, World Scientific Publishing Company, New Jersey, 2013 | MR | Zbl
[5] Traub J. F., Iterative Methods for the Solution of Equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1964 | MR | Zbl
[6] Rall L. B., Schwetlick H., “Computational solution of nonlinear operator equations”, J. Appl. Math. Mech., 52 (1972), 630–631
[7] Amat S., Busquier S., Gutierrez J. M., “Geometric constructions of iterative functions to solve nonlinear equations”, J. Comp. Appl. Math., 157 (2003), 197–205 | DOI | MR | Zbl
[8] Argyros I. K., Computational Theory of Iterative Methods, Studies in computational mathematics, 15, Elsevier, New York, 2007 | MR | Zbl
[9] Chun C., Stanica P., Neta B., “Third-order family of methods in Banach spaces”, Comp. Math. Appl., 61 (2011), 1665–1675 | DOI | MR | Zbl
[10] Ortega J. M., Rheinboldt W. C., Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970 | MR | Zbl
[11] Argyros I. K., Khattri S. K., “Local convergence for a family of third order methods in Banach spaces”, Punjab Univ. J. Math., 46 (2016), 52–63 | MR
[12] Argyros I. K., George S., “Local convergence of two competing third order methods in Banach space”, Appl. Math., 41 (2016), 341–350 | MR
[13] Argyros I. K., Gonzalez D., Khattri S. K., “Local convergence of a one parameter fourth-order Jarratt-type method in Banach spaces”, Comment. Math. Univ. Carolin., 57 (2016), 289–300 | MR | Zbl
[14] Cordero A., Ezquerro J. A., Hernandez-Veron M. A., Torregrosa J. R., “On the local convergence of a fifth-order iterative method in Banach spaces”, Appl. Math. Comput., 251 (2015), 396–403 | MR | Zbl
[15] Polyanin A. D., Manzhirov A. V., Handbook of Integral Equations, CRC Press, Boca Raton, 1998 | MR | Zbl
[16] Martinez E., Singh S., Hueso J. L., Gupta D. K., “Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces”, Appl. Math. Comput., 281 (2016), 252–265 | MR
[17] Singh S., Gupta D. K., Martinez E., Hueso J. L., “Semilocal and local convergence of a fifth order iteration with Frechet derivative satisfying Holder condition”, Appl. Math. Comput., 276 (2016), 266–277 | MR
[18] Argyros I. K., George S., “Local convergence for some high convergence order Newton-like methods with frozen derivatives”, SeMA J., 70 (2015), 47–59 | DOI | MR | Zbl
[19] Wang X., Kou J., “Convergence for a class of multi-point modified Chebyshev–Halley methods under the relaxed conditions”, Numer. Algor., 68 (2015), 569–583 | DOI | MR | Zbl
[20] Argyros I. K., Magrenan A. A., “A study on the local convergence and the dynamics of Chebyshev–Halley-type methods free from second derivative”, Numer. Algor., 71 (2016), 1–23 | DOI | MR | Zbl
[21] Argyros I. K., George S., “Local convergence of deformed Halley method in Banach space under Holder continuity conditions”, J. Nonlinear Sci. Appl., 8 (2015), 246–254 | DOI | MR | Zbl
[22] Argyros I. K., George S., “Local convergence for deformed Chebyshev-type method in Banach space under weak conditions”, Cogent Math., 2 (2015), 1–12 | DOI | MR | Zbl
[23] Argyros I. K., George S., “Local convergence of modified Halley-like methods with less computation of inversion”, Novi Sad J. Math., 45 (2015), 47–58 | DOI | MR | Zbl
[24] George S., Argyros I. K., “A unified local convergence for Jarratt-type methods in Banach space under weak conditions”, Thai J. Math., 13:1 (2015), 165–176 | MR | Zbl
[25] Sharma J. R., Gupta P., “An efficient fifth order method for solving systems of nonlinear equations”, Comp. Math. Appl., 67 (2014), 591–601 | DOI | MR | Zbl
[26] Homeier H. H. H., “A modified Newton method with cubic convergence: the multivariate case”, J. Comp. Appl. Math., 169 (2004), 161–169 | DOI | MR | Zbl