Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2018_21_4_a4, author = {V. I. Mashukov}, title = {An algorithm of linear combinations: thermal conductivity}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {407--418}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2018_21_4_a4/} }
V. I. Mashukov. An algorithm of linear combinations: thermal conductivity. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 4, pp. 407-418. http://geodesic.mathdoc.fr/item/SJVM_2018_21_4_a4/
[1] Yasnitskii L. N., “Ob odnom sposobe resheniya zadach teorii garmonicheskikh funktsii i lineinoi teorii uprugosti”, Prochnostnye i gidravlicheskie kharakteristiki mashin i konstruktsii, Izd-vo Permskogo politekhnicheskogo instituta, Perm, 1973, 78–83
[2] Yasnitskii L. N., Metod fiktivnykh kanonicheskikh oblastei v mekhanike sploshnykh sred, Nauka, M., 1992
[3] Gladkii S. L., Yasnitskii L. N., “Reshenie trekhmernykh zadach teploprovodnosti metodom fiktivnykh kanonicheskikh oblastei”, Vestnik Permskogo universiteta. Matematika. Mekhanika. Informatika, 2011, no. 1-5, 41–45
[4] Gladkii S. L. Yasnitskii L. N., “Reshenie zadach lineinoi termouprugosti metodom fiktivnykh kanonicheskikh oblastei”, Vestnik Permskogo universiteta. Dinamika i prochnost mashin, 2003, no. 4, 79–90
[5] Shardakov I. N., Metod geometricheskogo pogruzheniya v teorii uprugosti, eds. I. N. Shardakov, N. A. Trufanov, V. P. Matveenko, UrORAN, Ekaterinburg, 1999
[6] Kostyuchenko C. B., “Metod neortogonalnykh ryadov dlya neidealno sopryazhennykh ellipticheskikh zadach s razryvnymi koeffitsientami”, Vychislitelnye tekhnologii, 5:1 (2000), 52–64 | MR | Zbl
[7] Kobylyanskii Yu. V., Popkova T. L., Slepyan G. Ya., “O metode neortogonalnykh ryadov dlya chislennogo resheniya zadach matematicheskoi fiziki”, Zh. vychisl. matem. i mat. fiziki, 28:2 (1988), 237–246 | MR | Zbl
[8] Bolshakov A. Yu., Eltyshev V. A., “O reshenii prostranstvennykh zadach teorii uprugosti metodom Fure”, Staticheskie i dinamicheskie zadachi uprugosti i vyazkouprugosti, Izd-vo UNTs AN SSSR, Sverdlovsk, 1983
[9] Kupradze V. D., Aleksidze M. A., “Metod funktsionalnykh uravnenii dlya priblizhënnogo resheniya nekotorykh granichnykh zadach”, Zh. vychisl. matem. i mat. fiziki, 4:4 (1964), 683–715 | MR | Zbl
[10] Aleksidze M. A., Reshenie granichnykh zadach metodom razlozheniya po neortogonalnym funktsiyam, Nauka, M., 1978
[11] Kupradze V. D., Metody potentsiala v teorii uprugosti, Fizmatgiz, M., 1963
[12] Kupradze V. D., Gegeliya T. G., Basheleishvili M. O., Burchuladze T. V., Trëkhmernye zadachi matematicheskoi teorii uprugosti i termouprugosti, Nauka, M., 1976 | MR
[13] Mashukov V. I., Osinov V. A., “Spektralnaya otsenka tochnosti scheta v zadachakh teorii uprugosti”, Mekhanika tvërdogo tela, 4, 1990, 35–40
[14] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | MR
[15] Mashukov V. I., Algoritm lineinykh kombinatsii dlya resheniya granichnykh zadach teorii uprugosti i teploprovodnosti, Dep. v VINITI 31.03.16, No 55-V2016, Sibirskii gosudarstvennyi universitet putei soobscheniya, Novosibirsk, 2016
[16] Mashukov V. I., “An Outer LayerMethod for Solving Boundary Value Problems of Elasticity Theory”, Numerical Analysis and Applications, 10:3 (2017), 237–243 | DOI | DOI | MR | Zbl
[17] Kheigeman L., Yang D., Prikladnye iteratsionnye metody, Mir, M., 1986
[18] Kuznetsov S. B., Algoritm resheniya kvazilineinykh ellipticheskikh uravnenii v oblastyakh s istochnikami na vnutrennikh granitsakh, Preprint 476, AN SSSR. Sib. otd-nie. VTs, Novosibirsk, 1983