Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2018_21_4_a3, author = {M. Yu. Kokurin}, title = {The clustering effect for stationary points of discrepancy functionals associated with conditionally well-posed inverse problems}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {393--406}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2018_21_4_a3/} }
TY - JOUR AU - M. Yu. Kokurin TI - The clustering effect for stationary points of discrepancy functionals associated with conditionally well-posed inverse problems JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2018 SP - 393 EP - 406 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2018_21_4_a3/ LA - ru ID - SJVM_2018_21_4_a3 ER -
%0 Journal Article %A M. Yu. Kokurin %T The clustering effect for stationary points of discrepancy functionals associated with conditionally well-posed inverse problems %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2018 %P 393-406 %V 21 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2018_21_4_a3/ %G ru %F SJVM_2018_21_4_a3
M. Yu. Kokurin. The clustering effect for stationary points of discrepancy functionals associated with conditionally well-posed inverse problems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 4, pp. 393-406. http://geodesic.mathdoc.fr/item/SJVM_2018_21_4_a3/
[1] Lavrentev M. M., Romanov V. G., Shishatskii S. P., Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980 | MR
[2] Kabanikhin S. I., Obratnye i nekorrektnye zadachi, Sibirskoe nauchnoe izd-vo, Novosibirsk, 2008
[3] Romanov V. G., Ustoichivost v obratnykh zadachakh, Nauchnyi mir, M., 2004
[4] Isakov V., Inverse Problems for Partial Differential Equations, Springer, N.Y., 2006 | MR | Zbl
[5] Yakhno V. G., Obratnye zadachi dlya differentsialnykh uravnenii uprugosti, Nauka, Novosibirsk, 1990
[6] Kokurin M. Yu., “Conditionally well-posed and generalized well-posed problems”, Comput. Mathem. and Math. Phys., 53:6 (2013), 681–690 | DOI | DOI | MR | Zbl
[7] Kokurin M. Yu., “On a characteristic property of conditionally well-posed problems”, J. of Inverse and Ill-Posed Problems, 23:3 (2015), 245–262 | DOI | MR | Zbl
[8] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978
[9] Bakushinsky A. B., “A posteriori error estimates for approximate solutions of irregular operator equations”, Dokl. Math., 83:2 (2011), 192–193 | DOI | MR | Zbl
[10] Kokurin M. Yu., “On stable finite dimensional approximation of conditionally well-posed inverse problems”, Inverse Problems, 32:10 (2016), 105007 | DOI | MR | Zbl
[11] Kokurin M. Yu., “Stable gradient projection method for nonlinear conditionally well-posed inverse problems”, J. of Inverse and Ill-posed Problems, 24:3 (2016), 323–332 | DOI | MR | Zbl
[12] Bauschke H. H., Borwein J. M., “On the convergence of von Neumann's alternating projection algorithm for two sets”, Set-Valued Analysis, 1 (1993), 185–212 | DOI | MR | Zbl
[13] Bari N. K., Trigonometricheskie ryady, GIFML, M., 1961